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Major milestone in object detection research based on deep convolution neural networks since 2012. The trend in the last year has been designing object
detectors based on anchor-free(in red) and AutoML(in green) techniques, which are potentially two important research directions in the future.
(X. Wu, et al, “Recent Advances in Deep Learning for Object Detection,” https://arxiv.org/pdf/1908.03673v1.pdf
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+ Two approaches for Object Detection
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A road map of object detection. Milestone detectors in this figure: VJ Det. [10, 11], HOG Det. [12], DPM [13-15], RCNN [16], SPPNet [17], Fast RCNN [18],
Faster RCNN [19], YOLO [20], SSD [21], Pyramid Networks [22], Retina-Net [23].
(Z. Zou, “Object Detection in 20 Years: A Survey,” arXiv:1905.05055v2.
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+ Two approaches for Object Detection

1) 2-stage Detector
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Input Image + Selective Search

For Each Proposed Region

== |:| Multl-Class Classification

* Region Proposal Network

+ efc.

Prior Arts like R-CNN, first generates 2K region proposals
(bounding box candidates), then detect object within the each
region proposal as below:

Selective searchE £3d}f Rol(Region Of Interest)E 2 200074 ==
Rol 27|€ XXl S Ust AIO|XE THE.

RolE CNNOj| 2450 featureE ==

ANENENENAN

CNNZ E3} LI featureS SVMO|| 201 classification & ' —
CNNZ E5ff LI2 featureZ regressiong £ bounding boxZ 0| =&t 1. Input
(Bounding box regression) image

mmm) | Classification —
__— D Bounding Box Regression
Output
R-CNN: Regions with CNN features
SR e egion
:
iy SRR S CNNIN, -
.
2. Extract region 3. Compute 4. Classify
proposals (~2k) CNN features regions



+ Two approaches for Object Detection

1) 2-stage Detector

« Fast R-CNN

Qutputs: bbox

softmax regressor
——

Rol FC FC
pooling
layer

Rol feature
vector For each Rol

+ Faster R-CNN : a single, unified network for
object detection. The RPN module serves as
the ‘attention’ of this unified network.

Object Detection

feature

feature

feature feature
AL S

feature

A

SPP/Rol pooling

R-CNN SPP-net & Fast R-CNN (the same forward pipeline)

* Extract image regions * 1CNN on the entire image

* 1 CNN per region (2000 CNNs) * Extract features from feature map regions

* Classify region-based features * Classify region-based features

* Complexity: ~@xx 2000 * Complexity: ~60(} x[1000] x 1

H W * ~160x faster than R-CNN
H w
classifier

Region Proposal Network (RPN) module

| 2k scores ] -

Rol pooling

k anchor boxes

| 4k coordinates |

p .
propoy L i/ /

cls layer \ t reg layer .

[ 256-d \

Region Proposal Networ

feature maps

t intermediate layer
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conv layers sliding window
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+ Two approaches for Object Detection
S //
Conv Layers — —

2) 1-stage Detector
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Feature Maps

Input Image Feature Extraction

*  YOLO?} object detectionZ single regression
problemQ = X414 MLt Sf.

*  YOLO v1& single convolutional network2 0|0|X|E &
21410}, 042{ 7H2| Bounding Box2} Zf Box2| classE 0
=3t 12|11 non-max suppressiong Sl S
Bounding Box& Mgt

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

* Image -> bounding box coordinate and class

- Figure 1: The YOLO Detection System. Processing images
probability

with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448 x 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.

* Extremely fast
* Global reasoning

* Generalize representation

For Each Grid or Spatial Location

D Multi-Class Classification

I:l Bounding Box Regression

Output




loU

[2H2] Xt=] https://www.pyimagesearch.com/2016/11/07/intersection-over-union-

loU (Intersection of Union) iou-for-object.detection/

If loU Threshold = 0.5

False Positive (FP)

loU is an evaluation metric used to measure the accuracy of an
object detector on a particular dataset.

Any algorithm that provides predicted bounding boxes as output
can be evaluated using loU. Need two things;

1) The ground-truth bounding boxes (i.e., the hand labeled
bounding boxes from the testing set that specify where in the
image our object is).

2) The predicted bounding boxes from our model.

- Ground-truth bounding box

T e

T ——— - Predicted bounding box

» Area of overlap
between the predicted
bounding box and the loU=0.92 1oU=0.71 1oU=0.39

Area of Overlap ground-truth bounding
= box.

Area of Union

* Area of union the area
encompassed by both _
the predicted bounding  Excellent Good Poor
box and the ground-
truth bounding box.

*+  PASCAL VOC Challenge : An Intersection over Union
score > 0.5 is normally considered a “good” prediction.



- [&3 Xt=] https://towardsdatascience.com/map-mean-average-precision-might-
mAP (mean Average Precision) Cﬁ;fuse_you_w%ﬂ bfage?2

*  mAP is a popular evaluation metric used for object detection (i.e.
localization and classification). Localization determines the
location of an instance (e.g. bounding box coordinates) and
classification tells you what it is (e.g. a dog or cat).

* Precision measures how accurate is your predictions. i.e. the
percentage of your predictions are correct. (220| True2gtd O|=¢t
A S YEE True?l A9l H|E)

* Recall measures how good you find all the positives. For example,
we can find 80% of the possible positive cases in our top K
predictions. (&H| HEO| TrueQ! 2 S0 20| True2t K| E5t 242

Here is the CAT This is an image of CAT

H|Z)
mAP is not calculated by taking the average of precision values.
e rp Object detection systems make predictions in terms of a bounding
TP + FP box and a class label.
example For each bounding box, we measure an overlap between the
o TP predicted bounding box and the ground truth bounding box. This is

TP + FN Precision = total positive results measured by loU (intersection over union).

For object detection tasks, we calculate Precision and Recall using

_ »  precision - recall TP loU value for a given loU threshold.
Fl-=72 = Recall =
precision + recall =

total cancer cases



L 23 Xt=] https://towardsdatascience.com/map-mean-average-precision-might-
mAP (mean Average Precision) Cﬁ;fuse_you_w%ﬂ bfage?2

The general definition for the Average Precision (AP) is finding the
area under the precision-recall curve above.

mAP (mean average precision) is the average of AP.

D = Predicted Bounding Box
- D = Ground Truth Bounding Box

* AP is averaged over all categories. The mean Average Precision or
mMAP score is calculated by taking the mean AP over all classes
and/or overall loU thresholds, depending on different detection
challenges that exist.

v' In PASCAL VOC2007 challenge, AP for one object class is

calculated for an loU threshold of 0.5. So the mAP is averaged over Calculate the AP at loU threshold 0.5. TP=1, FP=0. FN=1
all object classes.

TP 1 TP 1
v' Forthe COCO 2017 challenge, the mAP is averaged over all object Precision = - =1 Recall -= = = 0.5
categories and 10 loU thresholds. TP+ FP 1+0 TP+FN 1+1
* For a prediction, we may get different binary TRUE or FALSE Plot the 11 points interpolated We now calculate AP by taking
positives, by changing the loU threshold. Precision-Recall curve. the area under the PR curve.

This is done by segmenting the
recalls evenly to 11 parts:

11 Point Interpolated Precision-Recall Curve {0,0.1,0.2,....0.9.1}.

(CUELTCELGILEGNS = False Positive (FP) 19 ® S 2 8 !

AP = % ZR({'Q”; Precision(Recall)) = 1

Precision
[=]
w

I
AP =1 Zﬂ‘ﬂ.I,ﬂ.Z,I}.ﬁ,..l’) 91 (176)+(0%*5) =0.545

[CWEGICHLGILERFY = True Positive (TP)

0 oo e o SomAP@OQ.5 for the image is

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

loU for the prediction = ~0.3 Recall 0.545, not 1. 9



P 23 Xt=] https://jonathan-hui.medium.com/map-mean-average-precision-for-
mAP (mean Average Precision) object-detection-45¢121a31173

AP * Plot the precision against the recall value to see this zig-zag pattern
* The general definition for the Average Precision (AP) is finding the .

area under the precision-recall curve above. 09 Precision-recall curve

1
AP = f p(r)dr 5 0
0 B 3§ 07

570 AMfE7E ESHE|0] = O|0]X|0]| DetectorZt 107H2] AfUE AEUC &

7148t 2t2to| AE ZWE confidence’t £2 02 KA A, .

Prediction 05
Rank Correct? Precision Recall
04

1 True 1.0 0.2 0.2 03 0.4 05 06 0.7 0.8 0.9 1

2 True 1.0 0.4 Recall

9 e i 4 » Precision and recall are always between 0 and 1. Therefore, AP falls

4 False 05 0.4 within 0 and 1 also. Before calculating AP for the object detection, we

5 — - - often smooth out the zigzag pattern first.

6 True 0.5 0.6 1 : 2

7 True 0.57 0.8 =

8 False 05 0.8 e

9 False 0.44 0.8 :f_é e

10 True 0.5 1.0 B 0.6
« recall2 MA3| Z7I5ICH7F rank 100( A 5¥H Truel 1.00] =i,

0.4

« HIHO|| Precision2 S£E% ot A= 201 = JUOH 57H2] At S 1074

= i e 0.2 03 0.4 0.5 0.6 0.7 08 0.8 10|
O AfItE HEOCO R XZHMOZ 0.59| precisionZ} El.

Recall



P [&#] Xt=] https://jonathan-hui.medium.com/map-mean-average-precision-for-
mAP (mean Average Precision) object-detection-45¢121a31173

AP Interpolated AP
» Graphically, at each recall level, we replace each precision value « PASCAL VOC is a popular dataset for object detection. For the
with the maximum precision value to the right of that recall level. PASCAL VOC challenge, a prediction is positive if loU = 0.5. Also, if
1 multiple detections of the same object are detected, it counts the first
s one as a positive while the rest as negatives.
. * In Pascal VOCZ2008, an average for the 11-point interpolated AP is
' calculated.
E 0.6 Tl:\. pl'x.‘l:isit)l] to the l‘ighl - o * & 4 AP = % X (API(O) +AP,-(01) S +APr(10})
= /f/TL - % AP =(5%1.0 +4x0.57 + 2x0.5)/11
04 »”// I 5 -
02 03 0.4 05 0.6 0.7 08 0.9 1 E 07
Recall : 0.6
L @
» So the orange line is transformed into the green lines and the curve 0s e
will decrease monotonically instead of the zigzag pattern. The ” el
calculated AP value will be less suspectable to small variations in 9 2 o2 03 04 05 05 oz 08 03 1
the ranking. Mathematically, we replace the precision value for Recall
recall f with the maximum precision for any recall = f. 1 _
P y AP = i Z AP,— - Z pinrerp(r) pim'erp{r) = T}ﬂfpf?)

pinterp(r) = r‘};lgr?( p(f) 11 re{0.0,...,1.0} 1]‘ re{0.0,...,1.0}

This interpolated method is an approximation which suffers two issues. It is less precise. Second, it lost the capability in
measuring the difference for methods with low AP. Therefore, a different AP calculation is adopted after 2008 for PASCAL VOC. 11



P 23 Xt=] https://jonathan-hui.medium.com/map-mean-average-precision-for-
mAP (mean Average Precision) object-detection-45¢121a31173

AP (Area under curve AUC) COCO mAP
+ PASCAL VOC2010-2012 samples the curve at all unique recall * In COCO mAP, a 101-point interpolated AP definition is used in the
values (r1, rz, ...), whenever the maximum precision value drops. calculation.

With this change, we are measuring the exact area under the
precision-recall curve after the zigzags are removed.

* For COCO, AP is the average over multiple loU (the minimum loU to
consider a positive match). AP@].5:.95] corresponds to the average
AP for loU from 0.5 to 0.95 with a step size of 0.05. For the COCO

. competition, AP is the average over 10 loU levels on 80 categories

09 = (AP@].50:.05:.95]: start from 0.5 to 0.95 with a step size of 0.05).

08 » The following are some other metrics collected for the COCO dataset.
=
8
§ 0.7
[ Iy -1 Average Precision (AP):

he AP % AP at IoU=.50:.05:.95 (primary challenge metric)

o Aplou=.50 % AP at IoU=.50 (PASCAL VOC metric)

' e ApToU=.75 % AP at IoU=.75 (strict metric)

s p(rs) = AP Across Scales:

(P -2 P () ApPRLL % AP for small objects: area ¢ 322
o R Apmedium % AP for medium objects: 322 < area < 96°
. Aplarge % AP for large objects: area > 96°
0 (1) " s Recall Average Recall (AR):
ARSEL % AR given 1 detection per image
» No approximation or interpolation is needed. Instead of sampling 11 AR“‘“‘i:a % AR given 10 detections per image
. . max= 1 3 1
points, we sample p(ri) whenever it drops and computes AP as the - “A'lms o = AR glvan 108 dtactions pee dmige
sum of the rectangular blocks. ARSMall ' X AR for small objects: area < 322
ARmedium % AR for medium objects: 322 < area < 967
AP=X ( P ™ r) pmm(rw) pmmp(rm;) = max p(7) ARlarge % AR for large objects: area > 962

Fzr,

* This definition is called the Area Under Curve (AUC) 12



Detection, Ho Seong Lee

https://www.slideshare.net/HoseonglLee6/yolov4-optimal-

. . speed-and-accuracy-of-object-detection-review
YOLOv1 ~v3 qUICk review: YOLO vl https://www.youtube.com/watch?v=CXRlpsFpVUE

* Very fast one-stage approach!

* Image = bounding box coordinate and class probability

52 nm _ . )
Acoora 3 3 17 [(T; —&:)" + (i — ﬁ:‘)z]

i=() j=0

| Am-msiil"a? [("T - V) + ("'/”_' ‘ﬁﬂ

i=0j=0

P (- )’

i=0 j=0

‘.;'2

+ )inuthZi Ir:?b] (Ca - éc)z

i=0 j=0

5 x5 grid on input ’ Final detections

52 _
+3°17 3 ile) —pile)? 3
i=0

o€ clusses

Class probability map

13



YOLO v1 ~ v3 quick review: YOLO v2

* YOLO vl + many algorithms

YOLO vl

Clags probability map

Detection, Ho Seong Lee

https://www.slideshare.net/HoseonglLee6/yolov4-optimal-

enaad-and-.arcriirarvi-nf-nhiacrt_datartinn_raviaws

Better
Batch Normalization Faster
High resolution classifier
Darknet-19

Anchor boxes

Dimension clusters
Direct location prediction
Fine-grained features
Multi-scale training

Transfer learning

Stronger

Hierarchical classification
Dataset combination with Word-tree
Joint classification and detection



Detection, Ho Seong Lee

https://www.slideshare.net/HoseonglLee6/yolov4-optimal-
speed-and-accuracv-of-obiect-detection-review

YOLO v1 ~ v3 quick review: YOLO v3

* YOLO v2 + many algorithms (YOLOv3: An Incremental Improvement)

YOLO v2
Bounding box prediction = sum of squared loss

Better

Batch Normalization Faster

High resalution classifier
Darknet-19

Anchor boxes : . " . e .
Dimension clusters Transfer earning I Class prediction = Multilabel classification

Direct location prediction
Fine-grained features
Multi-scale training

Strongar d " " |
Hierarchical classification Pre l Ct l 0 n S a CrOSS S Ca e S
Dataset combination with Word-tree
Joint classification and detection

Darknet-53

15



Detection, Ho Seong Lee

https://www.slideshare.net/HoseonglLee6/yolov4-optimal-
speed-and-accuracy-of-object-detection-review

YOLOv4: Optimal Speed and Accuracy of Object Detection

YOLO v3
38 W voLova
~:—RellnaNel—50
RetinaNet-101
361 €] Method mAP _time
{B] Ss0327 280 61
asl [C] DSSD321 280 85
[D] A-FCN 288 85
[F] (E] SSD513 3.2 125
[F] DSSD513 332 156
[GIFENFRCN 382 172
E RatinaMet-50-500 325 73
30} @ RetinaMNet-101-500 344 90
AetinaNet-101-800 37.8 198
YOLOV3-320 282 22
i YOLOV3-416 a0 29
28 [€] YOLOv3-608 330 51
50 100 150 200 250

YOLO 3 + many algorithms

inference time (ms)

Bag of Freebies

+ Bag of Specials

CSPDarknet53 + SPP, PAN

16



Yolo v1 — You Only Look Once

Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,”

arXiv:1506.02640, CVPR2016

[23 A=)

Sik-Ho Tsang, Review: YOLOv1 — You Only Look Once
(Object Detection), https://towardsdatascience.com/yolov1-
you-only-look-once-object-detection-e 1f3ffec8a89

[PR12] You Only Look Once (YOLO): Unified Real-Time
Object Detection, Taegyun Jeon
https://www.slideshare.net/TaegyunJeon1/pr12-you-only-
look-once-yolo-unified-realtime-object-
detection?from_action=save
https://www.youtube.com/watch?v=eTDcoeqj1 w

DeepSystem.io, “YOLO: You only look once Review”
https://www.youtube.com/watch?v=L0tzmv--CGY
https://docs.google.com/presentation/d/1aeRviKG21KHdD5Ig

6Hayhx5rPqg Z0OsGiG5rJ1HP7BbA/pub?start=false&loop=fal
se&delayms=3000&slide=id.q137784ab86 4 1318

Big picture

67
59
40

mAP YOLOV2 416 416 2007+2012  76.8
YOLOV2 480 x 480 200742012 77.8
YOLOV2 544 x 544 200742012 78.6
Faster R-CNN
SSD
FPS: 7
Fast R-CNN ;
mAP: 73.2 FPS: 58
FPS: 0.5 mAP: 72.1
mAP: 70
YOLO
FPS: 45
mAP: 63.4
R-CNN
FPS: -
mAP; 58.5
DPM
FPS:0.5
mAP: 34.3
| | | 5 i
Nov 2013 Apr 2015 June 2015 Dec 2015 Time

17




» Object Detection

>

>

>

Yolo

Regression problem

Only One Feedforward
Global context

Unified (Real-time detection)

YOLO : 45fps
Fast YOLO : 155fps

General representation

Robust on various background
Other domain

_ [2F2l| Xt=] [PR12] You Only Look Once (YOLO): Unified Real-Time Object
Yolo v1 — You Only Look Once Detection, Taegyun Jeon

YOLO Main Concept

Abstract

Prior work on object detection repurposes classifiers to perform detection.

Instead, we frame object detection as a regression problem to spatially separated
bounding boxes and associated class probabilities.

A single neural network predicts bounding boxes and class probabilities directly from
full images in one evaluation. Since the whole detection pipeline is a single network,
it can be optimized end-to-end directly on detection performance.

Our unified architecture is extremely fast. Our base YOLO model processes images
in real-time at 45 fps. A smaller version of the network, Fast YOLO, processes an
astounding 155 fps while still achieving double the mAP of other real-time detectors.

Compared to state-of-the-art detection systems, YOLO makes more localization
errors but is less likely to predict false positives on background. Finally, YOLO
learns very general representations of objects. It outperforms other detection
methods, including DPM and R-CNN, when generalizing from natural images to
other domains like artwork.

18



Yolo v1 - You Only Look Once 23 Xt=2] [PR12] You Only Look Once (YOLO): Unified Real-Time Object

Detection, Taegyun Jeon

Unified Detection

YOLO suggests to have unified network to perform all as once. Also,
end-to-end training network can be achieved.

All Box, All classes

* Image — S x S grids (S=7)
v

If the center of an object falls into a grid cell, that grid cell is
responsible for detection that object.

» Each grid cell predicts B bounding boxes (B=2) and confidence
scores for those boxes.

Bounding boxes + confidence

v Each bounding box consists of 5 predictions; S xS grid on input

Final detections

x,y,w, h,confidence

. o . truth
confidence = Pr(Object) X 10U qq Class probability map

Figure 2: The Model. Our system models detection as a regres-
sion problem. It divides the image into an S x S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,

. _ and C class probabilities. These predictions are encoded as an
Pr(Class;|Object)  Total number of classes = 20 S x 8 x (B %5+ C) tensor.

« Each grid cell predicts C conditional class probabilities,

19



_ [&F2ll Xt=] [PR12] You Only Look Once (YOLO): Unified Real-Time Object
Yolo v1 — You Only Look Once Detection, Taegyun Jeon

Unified Detection

For evaluating YOLO on PASCAL VOC, we use S = 7,

« Predict one set of class probabilities per grid cell, regardless of the B = 2. PASCAL VOC has 20 labelled classes so ' = 20.
number of boxes B. Owr final predictionisa 7 x 7 x 30 tensor.

+ Attest time, individual box confidence prediction

Pr(Class;|Object) X Pr(Object) X IOUIt)?ééh

=Pr(Class;) x 10 Ulgrr‘égh

* The output size becomes: SxS x (Bx 5 + C)

7X7x(2x5+20)=1470
(S=7, B=2, C=20 (total number of classes))

1st - 5th éth - 10th 11th - 30th
Box #1 Box #2 Class Probabilities

20



_ [&F2ll Xt=] [PR12] You Only Look Once (YOLO): Unified Real-Time Object
Yolo v1 — You Only Look Once Detection, Taegyun Jeon

Unified Detection

class confidence score = box confidence score X conditional class probability

box confidence score = P, (object) - loU
conditional class probability = P,(class;|object)
class confidence score = P,(class;) - loU

= box confidence score X conditional class probability

where

P,(object) is the probability the box contains an object.

IoU is the IoU (intersection over union) between the predicted box and the ground truth.
P,(class;|object) is the probability the object belongs to class; given an object is presence.
P.(class;) is the probability the object belongs to class;

21



* Modified GooglLeNet
* 1x1 reduction layer (“Network in Network”)

448

j

Yolo v1 — You Only Look Once

Network Design : Yolo

23 Xt&] [PR12] You Only Look Once (YOLO): Unified Real-Time Object
Detection, Taegyun Jeon

Our network architecture is inspired by the GoogLeNet
model for image classification [34]. Our network has 24
convolutional layers followed by 2 fully connected layers.
Instead of the inception modules used by GooglLeNet, we
simply use 1 x 1 reduction layers followed by 3 x 3 convo-
lutional layers, similar to Lin et al [22]. The full network is
shown in Figure 3.

conv. layer m

The Architecture. Our detection
network has 24 convolutional
layers followed by 2 fully
connected layers.

Alternating 1x1 convolutional

layers reduce the features
space from preceding layers.

A

4096 30 We pretrain the

Conv. layer Conv. layer Conwv. layer Conw. layer
3x3x512 3x3x1024 3x3x1024 3x3x1024
Maxpool Layer Maxpool Layer Conv. Layer Conv. Layer
2x2-s-2 2x2-s-2 3x3x1024-s-2 3x3x1024
12
gl —]
3 gl —
3 28 aﬁ
4 I 14 71Ny 7
mn2
56 3
28 14
e PN — 7 7
3 192 (256) (512) (1024) 1024 1024
Conv. Layer Conv. Layer Conv:Layers Conwylayers Col ers Conv. Layers
7 %7 x64-52 3x3x192 1x1x128) 1x1 }x4 1x1 }x2 3x3x1024
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x5T2 3x3x1024 3x3x1024
2x2-5-2 2x2-5-2 1x1x256 1x1x 3x3x1024
3Ix3x512 3Ix3xX]102 3x3x(1024)s-2
Maxpool Layer  Maxpool Layer
2x2-52 2x2-5-2

convolutional layers on the
ImageNet classification task
at half the resolution
(224x224 input image) and
then double the resolution
for detection.

Conn. Layer  Conn. Layer

22



Yolo - tiny

Yolo v1 — You Only Look Once

Network Design : Yolo-tiny (9 Conv. layers)

23 Xt&] [PR12] You Only Look Once (YOLO): Unified Real-Time Object
Detection, Taegyun Jeon

Conv. layer Conv. layer Conv. layer Conv. layer
7@ 3x3x512 3x3x1024 3x3x1024 3x3x1024
Maxpool Layer Maxpool Layer Conv. Layer Conv. Layer
2x2-5-2 2x2-5-2 3x3x1024-s-2 3x3x1024
12
pli —
“ =
A48 3 28 Gﬁ [
3 14 7N | 7 7
! x|
56 28 5 k)
L 7 7 7
3 192 256 512 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers ~ Conn. Layer  Conn. Layer
7 x7 x64-52 3x3x192 1x1x128 1x1x256 1x1x512 3x3x1024
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-52 2x2-s-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-s-2
Maxpool Layer  Maxpool Layer
2x2-52 2x2-5-2
.
Conw. layer Conwv. layer Conv. layer
Maxpool Layer Maxpool Layer Maxpool Layer
2x2-s-2 2x2-s-2 2x2-s-2 Conv. layer Conv. layer Conv. layer
—] ] ] 3x3x1024 3x3x1024 3x3x1024
Conv. layer Conv. layer Conv. layer
3x3x32 3x3x128 3x3x512
Maxpool Layer Maxpool Layer Maxpool Layer 23
2x2-5-2 2x2-5-2 2x2-5-2
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Training

1) Pretrain with ImageNet 1000-class competition dataset.

)

23 Xt&] [PR12] You Only Look Once (YOLO): Unified Real-Time Object
Detection, Taegyun Jeon

We pretrain our convolutional layers on the ImageNet
1000-class competition dataset [3(0]. For pretraining we use
the first 20 convolutional layers from Figure 3 followed by a
average-pooling layer and a fully connected layer. We train
this network for approximately a week and achieve a single
crop top-5 accuracy of 88% on the ImageNet 2012 valida-
tion set, comparable to the GooglLeNet models in Caffe’s
Model Zoo [24]. We use the Darknet framework for all
training and inference [26].

1 Object classifier
s

7l -
A48 3 28 36—\
3 14 7 7 7
2 : \ X[ P
N =TT o
- 7 7 7 .
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Cony. Layers Conv. Layers Cony. Layers Conv. Llayers ~ Conn. Layer  Conn. Layer
7x7 x64-s2 3x3x192 1x1x128 1x1x256 1x1x512 5| 3x3x1024
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-52 2x2-52 1x1x256 1x1x512 3x3x1024 :
33512 3x3x1024 33102452 We then conve:rt the model to pt_arform detection. Ren et
m Maxpool Layer  Maxpool Layer al. show that adding both convolutional and connected lay-
conv. layer 2x2-52 2x2-5-2 . .
d ¥ : ers to pretrained networks can improve performance [29].

2) “Network on Convolutional Feature Maps”
Increased input resolution (224 x 224) — (448 x 448)

Following their example, we add four convolutional lay-
ers and two fully connected layers with randomly initialized
weights. Detection often requires fine-grained visual infor-
mation so we increase the input resolution of the network
from 224 x 224 to 448 x 448.
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448

? ®
7 224

24 ---’—EXHX’

3 N 1024 T
Conv. Layer Convolutional Layers Conn. Layer  Conn. Layer
T wbd sl Detection Layer
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GoogleNet Fe CR | CR | cR P CR FCR FC Reshape
modification n — I s B i — 4 E_
(20 layers) " -~ | |
' : 7x7x30
14x14x1024 14x14x1024 14x14x1024 b1 FAO et
Train from scratch cliadal

=

Detection Procedure

26
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Input
image

448x448x3

GoogleMet CR
modification

(20 layers)

Yolo v1 — You Only Look Once

14x14x1024 14x14x1024

grid cell~~- _

[ deepsystems.io

7

Inference
Detection oy
Procedure |
CR CR CR FC,R FC Reshape
—_— — — —_— — —_—
717?30
— 7x7x1024 7x7x1024 :
4096x1 1470x1
Tensor values interpretation
__________ [ 1 1x30
\ ~ A > 7 ~v v |
5 5 20 - number of classes
Our final layer predicts both class probabilities and

bounding box coordinates. We normalize the bounding box
width and height by the image width and height so that they
fall between 0 and 1. We parameirize the bounding box x
and y coordinates to be offsets of a particular grid cell loca-
tion so they are also bounded between 0 and 1.

23

23 Xt&] [PR12] You Only Look Once (YOLO): Unified Real-Time Object
Detection, Taegyun Jeon
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X Inference

Input Detection
mage| Sooaleplot : CR D CR CR CR FC.R FC Reshape
e maodification >
(20 layers) :
| Tx7x30
- 4 7X7x1024 :
\ 14x14x1024 1dx14x1024 14x14x1024 TRTX02 X102

4096x1 1470x1
448x448x3

Tensor values interpretation

<

two bboxes for each grid cell

22
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\ Inference
nput Detection
mage GoogleNet CR CR CR CR FCR o Reshape Procedure
madification > > > —_— — — —
(20 layers)
7x7:f30
\ 14x14x1024 14x14x1024 14x14x1024 7x7x1024 TX7x1024 :
- 4096x1 1470x1
448x448x3
Tensor values interpretation
________________ [ ] 1x30
e T
7 - 1. x-coordinate of bbox center inside cell ([0; 1] wrt grid cell size)
—— 2. y - coordinate of bbox center inside cell ([0; 1] wrt grid cell size
g
7 3. w-bbox width ([0; 1] wrt image)
N 30 4. h - bbox height ([0; 1] wrt image)
. 5. ¢ - bbox confidence ~ P(obj in bbox1)
~. 7
grid cell~~-___

YOLO predicts multiple bounding boxes per grid cell. At training time we only

want one bounding box predictor to be responsible for each object. We assign

one predictor to be “responsible” for predicting an object based on which prediction

has the highest current IOU with the ground truth. This leads to specialization
between the bounding box predictors. Each predictor gets better at predicting
[}deepsysTems.io certain sizes, aspect ratios, or classes of object, improving overall recall. 29
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Loss Function (Sum-squared error)

loss function: . ) _
i - Object?t ZXHot= Grid Cell

...... j : Predictor Bounding Box
Ob_] _ L a2
"“““} ZD Zd L [(m'* m*) + (yi — ¥i) ] "b’ : Object?} ZXlot= AL grid cellQ| predictor bounding box
. . N 1 J=Uannusn -
;-ooscsahzat'on ‘....‘ .---I; ........................ é .......................... 2..3 ﬂz;)b] ObjeCt7|' xxl_lol_xl ?%E grld Ce" | predlctor boundlng bOX
obj 2 fw; — A/ Wy hi — A B : .
Cenas ‘z J ---------------------------------------------------- -
If object is 52 B s
detected in + Z Z ]li.’? E(Oi — C',;) .
Confidence  box im0 j=Cuuares 0[0|X| CHEZ 0= object’t i A0| 11 confidence= & 022 &Hotafd & A
loss <2 =2 Qls t'“\HE| gradien’} L-I HAX|= SAS atot=7| fIoiA =7t parameteE
If object is not AN B N2 At23t
detected in + AnoobJ Z Z ]11100 " ( z) o S o5
box e =0 j=0%ruraus * Acoora i % Y, W, hloss2| #dS |t parameter. (defalut : 5)
§2 peeeens *  Anopjc - Objectloss®| @S 2|et parameter. (defalut : 0.5)
-pgrn = b [
Flassification + Z 19030 (i(e) —5:(e)®  + x,yollossotw, hel lossE 78 (712, M9 HE2E o258

§=0Fannun ce::lasses
« confidence score?| lossE 71& (C; =1)

« confidence score?| lossE & (C; =0 )
where 1, Y denotes if object appears in cell z and IIOb] de-
notes Lhat the j5th bounding box predictor in cell 2 1s “re-
sponsible” for that prediction.

« conditional class probability2| loss& &t

30
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Loss Function (Sum-squared error)

model. We use sum-squared error because it is easy to op-
timize, however it does not perfectly align with our goal of
maximizing average precision. It weights localization er-
ror equally with classification error which may not be ideal.
Also, in every image many grid cells do not contain any
object. This pushes the “confidence’ scores of those cells
towards zero, often overpowering the gradient from cells
that do contain objects. This can lead to model instability,
causing training to diverge early on.

loss function:

To remedy this, we increase the loss from bounding box
1=0 j= D .......................................................... coordjnate predictions and decrease the IOSS fI'Ol'Il COIlﬁ—
52 B pree e dence predictions for boxes that don’t contain objects. We
+ Z Z ]12; (Oz — Cz) use two parameters, Acoord and Angobj to accomplish this. We
=0 j=Cnuuuns" set Aco()]-d — 5 aﬂd Anoob] — 5
£ noob A \2
—|—-An00bJ Z Z 1, o ( Z) Sum-squared error also equally weights errors in large boxes and small boxes.
=0 j=0%unsunst Our error metric should reflect that small deviations in large boxes matter less
~——» than in small boxes. To partially address this we predict the square root of

the bounding box width and height instead of the width and height

+Zl°‘” > (@ile) —pi(e))® B

G=0Fannnn c Eclasses

where 1, Y denotes if object appears in cell 7 and 1, b] de-
notes Lhat the jth bounding box predictor in cell 2 1s “re-
sponsible” for that prediction.

directly.

Note that the loss function only penalizes classification
error if an object 1s present in that grid cell (hence the con-
ditional class probability discussed earlier). It also only pe-
nalizes bounding box coordinate error if that predictor is
“responsible” for the ground truth box (i.e. has the highest
IOU of any predictor in that grid cell).
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Train Strategy

We train the network for about 135 epochs on the train-
ing and validation data sets from PASCAL VOC 2007 and
2012. When testing on 2012 we also include the VOC 2007
test data for training. Throughout training we use a batch
size of 64, a momentum of 0.9 and a decay of 0.0005.

Our learning rate schedule is as follows: For the first
epochs we slowly raise the learning rate from 1073 to 1072.
If we start at a high learning rate our model often diverges
due to unstable gradients. We continue training with 10~2
for 75 epochs, then 10~2 for 30 epochs, and finally 104
for 30 epochs.

To avoid overfitting we use dropout and extensive data
augmentation. A dropout layer with rate = .5 after the first
connected layer prevents co-adaptation between layers [ £].
For data augmentation we introduce random scaling and
translations of up to 20% of the original image size. We
also randomly adjust the exposure and saturation of the im-
age by up to a factor of 1.5 in the HSV color space.

Yolo v1 — You Only Look Once

23 Xt&] [PR12] You Only Look Once (YOLO): Unified Real-Time Object

Detection, Taegyun Jeon

Inference

2.3. Inference

Just like in training, predicting detections for a test image
only requires one network evaluation. On PASCAL VOC the
network predicts 98 bounding boxes per image and class
probabilities for each box. YOLO is extremely fast at test
time since it only requires a single network evaluation, un-
like classifier-based methods.

The grid design enforces spatial diversity in the bound-
ing box predictions. Often it is clear which grid cell an
object falls in to and the network only predicts one box for
each object. However, some large objects or objects near
the border of multiple cells can be well localized by multi-
ple cells. Non-maximal suppression can be used to fix these
multiple detections. While not critical to performance as it
is for R-CNN or DPM, non-maximal suppression adds 2-
3% in mAP.

Sum-squared error also equally weights errors in large boxes and small boxes.
Our error metric should reflect that small deviations in large boxes matter less
than in small boxes. To partially address this we predict the square root of
the bounding box width and height instead of the width and height
directly.
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Inference

deepsystems.io

—

Detection
Procedure
GooglLeNet § CR E CR | crR P cR FCR FC Reshape
meodification > > —— — —_— —_— R
(20 layers) R q d d
7x7x30
14x14x1024 14x14x1024 14x14x1024 TXTx1024 Tx7x1024
- 4096x1 1470x1
448x448x%3
Tensor values interpretation
i {from 1 to 20)
--------- 1x30
_____________ G - - n ) ™
=T Y 24 Y
____---"" 5 5 20 - number of classes
- . Class score ~ P(obj is class_i | obj in box)

-
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Input
imaga GoogleNet

madification

(20 layers)
448x448x3

14x14x1024

CR
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14x14x1024

deepsystems.io

—

Inference

=~ T

grid f:énnu__

Detection = N,

™ Procedure |/

CR [ cr P CR \ FCR FC Reshape
J— —_— | —_— — " J—
N 7x7%30
145141024 Tx7x1024 Tx7x1024
4096x1 1470x1
Tensor values interpretation
— = = bb1 confidence
.............. . L 8 k&
___________ < T

MUL

Class scores for bb1
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\ Inference

jmage GoogleNet ~ | [y CR |\ CR cR N crR P FCR FC

modification

(20 layers)
448x448x3

deepsystems.io

—

Detection |-
Procedure

Reshape

7X7%30

14x14x1024 14x14x1024 14x14x1024 Tirx1024 TRIR1021

4096x1 1470x1

Tensor values interpretation

_ - =bb2 confidence
4

------------- . I '
——————————— =

i g 3 Y
-—-—-.‘——- 5 . !—/;0
o - — - MUL

-l

~ T

e Do this operation for each
grid cefll~~- ___

bbox in each grid cell

Class scores for bb2
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nput
mage|

GoogleNet
modification

(20 layers)

14x14x1024

Inference

CR B CR | CR CR

—

deepsystems.io

Detection |8 ’

Procedure
FCR FC Reshape

—_— (| — || —»

14x14%1024 14x14%1024 EXCR10 TxaR1024

Tensor values interpretation

Tx7x30

4096x1 1470x1

448x448x3
/’ T
i
]
1
A
\ N ?
S.es 30

grid cell (1, 1)

bb1 bb2

20x1 20x1
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Inference

deepsystems.io

—

Detection |8 v
A Procedure |}
Griog| ahiat > crR | CR | crR [ CR FC.R FC Reshape

modification ; i
(20 layers) ’ »

. 7x7%30
\ 14x14x1024 14x14x1024 14x14x1024 T Txlx1es
= 4006x1 1470x1
448x448x3
Tensor values interpretation
__,,-—‘*EBb_n;e;rnrseonndceu(1.2)- _____ Semargs
Pl =" l_l_l
o bb1 bb2 bb3 bbd4
s’ ’ T - r—
It
!
-
b ~
7 [t e e ) -
30

grid cell (1, 2)
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Inference

Detection |-

: Procedure | &
GooglLeNet i CR ke C,R . cR CR N\ FCR FC Reshape
madification » > 4 :
(20 layers) : - 1 .
¥ d 3 7x7x30
\ 1024 1ax1ax1024 1ax14x1024 TX7x1024 7x7x1024
- 4096x1 1470x1
448x448x3
Tensor values interpretation
Total 7*7*2 = 98 bboxes _ =2 bboxes for last cell (7, 7) ~~~ _
rd N
L’ )
bb1 bb2 bb3 bbé W bb97 bb98
’I
v
7/
o
7
’,
7 R
v
/|
7’
4
7 l,
i 30 |,/
! ’
i ’I
] ARNEEEEEEEEEE .
! ”
] I/
1 s
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\ -
A\ ,f
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AY . I‘
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Look at detection procedure

Detection
Procedure

) —

Tx7x30

deepsystems.io

—
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bb1 bb2 bb3 bb4d bb37 bb98 bb1 bb2 bb3 bb4 bb87 bb98 bb3 bb1 bbog bb2 bb4 bb98 bb3 bb1 bhag bb2 bb4 bbas

Dogscores ;| | | | T _____ 1 1 (] N N 1 1 0 N O o] o[ Jol: 1 1 W ) A CIREINCHF
NMS algorithm set
Set zero . scores to zero for
if score < thresh1 (0.2) Sort descending redundant bboxes

....... » >
%tm o _2ﬁ1l - I S - o B
Y
Class scores for each bbox
Get first class scores for each bbox How it works <
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NMS (Non-Maximum Suppression)

y 4

orangoranae.Juice(D 36ij0.75')
orangeJuice(0 )
PR S

: !oralorange(o—.%')

| naeiu./ 1anaeiy :j):hup(o
| goraroraiorange(0.92) pum
g B
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mustard(0.99)

83| X&) https://ctkim.tistory.com/98
https://towardsdatascience.com/non-maximum-suppression-nms-93ce178e177c

NMS(Non-maximum Suppression) : 29X 0O 2 |nput image’t Object
detection €112|&2 S16HH Objectd| bbox(Bounding box)7t 2124 X|H 0
© =X 2HE 2(Score)it=S 7HX|A| €Ct. 0| otLte| Objectd| B2 bbox7t
MZICH S5t Object0] 06421 72| bbox7t QUCHH, 71E scoreZ} 52 bboxEt
57120 LIHX|Z H|7{ol= AY.

Input: A list of Proposal boxes B, corresponding confidence scores S
and overlap threshold N.

Output: A list of filtered proposals D.

Algorithm:

1) Select the proposal with highest confidence score, remove it from
B and add it to the final proposal list D. (Initially D is empty).

2) Now compare this proposal with all the proposals — calculate the
IOU (Intersection over Union) of this proposal with every other
proposal. If the IOU is greater than the threshold N, remove that
proposal from B.

3) Again take the proposal with the highest confidence from the
remaining proposals in B and remove it from B and add it to D.

4) Once again calculate the 10U of this proposal with all the
proposals in B and eliminate the boxes which have high IOU than
threshold.

5) This process is repeated until there are no more proposals left in B.
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NMS (Non-Maximum Suppression)

* Pseudo code of NMS Before non-max suppression After non-max suppression

Algorithm 1 Non-Max Suppression

1: procedure NMS(B,c) Non-Max
Suppression
2 Bnms — @ Initialize empty set
N
3 for b‘i E B do =>  Iterate over all the boxes ] ] ) o ) \_L/)
) Take boolean variable and set it as false. This variable indicates whether b(i)
4: di S Ca’r‘d T False should be kept or discarded
5 for bJ = B do Start another loop to compare with b(i)
6 if same (bt ’ bj ) > Anms then If both boxes having same 10U
7 if score(c, b;) > score(c, b;) then
8 d’L ,5‘ Ca?"d <_ 'I‘I‘ue Compare the scores. If score of b(i) is less than that
of b(j), b(i) should be discarded, so set the flag to
. . ue. * Now if you observe the algorithm above, the whole filtering process
9 lf IlOt d?x SCGT d then Once bii) i::ompared with all other boxes and still the y H g . g p
discarded flag s Flse, then by should be considered, So depends on single threshold value. So selection of threshold value
10: Brms < Brms U Di i e is key for performance of the model. However setting this threshold
1 1 . retum Bnms Do the same procedure for remaining boxes and return the final list |S trlcky Let US See thIS Scenarlo
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NMS (Non-Maximum Suppression)

o Qo &12|E2 71X 52 confidenceE 7tX|= bboxE & 11, bboxE 5 ¢ 0|3 2HHEZ X 5= LHS Soft-NMSE A+E5H= A0|Ct.

dxl= SH0| Al 01 50|H XA S=S MASIL. &Lt Ol JAIY . o) ojo|cjof= 1hQ 7ITHSIC} AT 42 0JAFOZ ZIiiAI bbox 59/

S H2¥ots A2 R MUZLRH mAPT} ROEX|= 2X7F UL confidence = 002 BHS0{ H7{5H= 710/ OFH confidence = S04 S
«  OfA[Z Of2 Z31 Z2 &=0] QICt. of2f 232 HE0| XX QULt. 0] AJof= ZO|L}. O] 2 2T mAPE SHAIZ =+ QULt.

i confidence=0.8/0.9/0.8 O|C}. 7}&F =2 0.99| &S X|2|5t11 0.8
o &2 ALt
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NMS (Non-Maximum Suppression)

Soft-NMS Illpllt :B= {bla“abN}9S: {S].S“ESN}9 Nt
B is the list of initial detection boxes
« The scores 0.4 of both the proposals are calculated based on the S Cfmtains corresponding detection scores
IOU values. The score calculation is as follows. Ny is the NMS threshold
begin
D+ {}
I iou(M, b;) < Ny while B £ empty do
"] si(1 —iou(M, by)), iou(M,b;) > N, m < argmax &
M — by,
s; — score of proposal i, DDUM;B+B-M

_ _ for b; in B do
b; — box corresponding to proposal i,

M — box corresponding to maximum confidence, 1f iou(M, b;) > N, then ’
N, — IOU threshold P | B B-b;3S+S—s;
'. end NMS
« These techniques works well for filtering predictions of a single 8; < 8;f(tou(M,b;))
model, What if you have predictions from multiple models? e SOftENMS
Weighted boxes fusion is a novel method for combining end
predictions of object detection models. end
» https://medium.com/analytics-vidhya/weighted-boxes-fusion- return D, S

86fad2c6be16 end 44
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NMS (Non-Maximum Suppression) : intuition

deepsystems.io

—

class (dog) scores for each bbox
|

bb47 bb20 bb15 bb7 bb1 bb4 bb8 bb9B
class: dog 0.5‘0.3 02 |01 o lo lo | o 1x98
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NMS (Non-Maximum Suppression) : intuition

deepsystems.io

—

class (dog) scores for each bbox
|

bb47 bb20 bb15 bb7 bb1 bb4 bb8 bb9B
class: dog 0.5‘0.3 02 |01 o lo lo | o 1x98

1) Get bbox with max score. 2) Compare “bbox_max” with

Let’s denote it “bbox max” others less score (non-zero)
B bboxes. Let’s denote it “bbox_cur”
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NMS (Non-Maximum Suppression) : intuition

deepsystems.io

—

class (dog) scores for each bbox

A
f 1

bb47 bb20 bb15s bb7 bb1 bb4 bb8 bh98
class: dog 0_5‘ 0 |02 | o1 0 0 ) 0 1x98

3) If IloU (bbox_max,
bbox_cur) > 0.5, then set 0
score to bbox_cur.

1) Get bbox with max score. 2) Compare “bbox_max” with

Let’s denote it “bbox max” others less score (non-zero)
B bboxes. Let’s denote it “bbox_cur”
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NMS (Non-Maximum Suppression) : intuition

deepsystems.io

—

class (dog) scores for each bbox

A
f 1

bb47 bb20 bb15s bb7 bb1 bb4 bb8 bh98
class: dog 0_5‘ 0 |02 |D.1 o | o 0 0 1x98

4) Go to next bbox_cur. 5) Go to next bbox_cur.

If loU(bbox_max,
bbox_cur)>0.5, then set 0
score to bbox_cure.

If loU(bbox_max,
bbox_cur)>0.5, then set 0
score to bbox_cure.

in this case : Continue in this case : Continue

Do this procedure for other
“bbox_cur”. After that....

48



Yolo v1 — You Only Look Once 23| At=]deepsystems.io

NMS (Non-Maximum Suppression) : intuition

deepsystems.io

—

class (dog) scores for each bbox

A

bb47 bb20 bb15 bb7

bb1 bb4 bb&8 bbo8

class: dog 05 0 [02 [0

0 0 0 0

Go to next bbox with big
score.

Let’s denote it “bbox_max”

Go to next bbox_cur.

If loU(bbox_max, bbox_cur)>0.5, then
set 0 score to bbox_cure.

in this case : Setto 0

Do this procedure for other “bbox_max” and for other
corresponding “bbox_cur”
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NMS (Non-Maximum Suppression) : intuition

deepsystems.io

—

class (dog) scores for each bbox

A
f 1

bb47 bb20 bb15s bb7 bb1 bb4 bb8 bh98
class: dog 0_5‘ 0 |02 |0 o | o 0 0 1x98

After comparison almost all pairs of bboxes the
only two bboxes with non-zero class score value.
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bb1 bb2 bb3 bb4 bb97 bbo8 bb1 bb2 bb3 bb4 bb87 bb98 bb3 bb1 bbag bb2 bb4 bb9s bb3 bb1 bhos bb2 bb4 bb98s

B e e ol e ettt mdl el bl ot H=Fa=kad=ss=s=s==kog =k & o= R e el e I e N e

Cat scores :" 1 | 0 0 0 1 i o 0 0 n 0 0o 0 o0

NMS algorithm set

Set zero : scores to zero for
Sort descendin
if score < thresh1 (0.2) ¢ redundant bboxes
............................

20x1 20x1

Do this procedure for next class
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bb1 bb2 bb3 bb4 bb97 bb98 bb1 bb2 bb3 bb4 bb97 bb98 bb3 bb1 bbos bb2 bb4 bbo8 bb3 bb1 bb98 bb2 bb4 bbS98
NMS algorithm set
. Set zero Sort descending scores to zero for
if score < thresh1 (0.2) redundant bboxes
............................
person scores :-_-_-_______-_______-_-___-___-_-_______-__j :-______E__-_______E-_______-_-____tl_______,' r__-:_-_—__-_-_:-_-_-_-_-_-_-E___-_-E-_-_a_-,' r ____________ o 9 q..-.._EF.__E_FJ

Do this procedure for all classes
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NMS (Non-Maximum Suppression) : intuition

bb97 bbas bb1 bb2 bb3 bb4 bb97 bb98

Set zero
if score < thresh1 (0.2)

—_—

e e B ol e o e e

Sort descending

bb3 bb1 bbos

deepsystems.io

bb2 bb4 bb98

NMS algorithm set
scores to zero for
redundant bboxes

_ =

b=

bb3 bb1 bbas bb2 bb4 bbS8

After this procedure —

a lot of zeros

Select bboxes to draw
by class score values
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NMS (Non-Maximum Suppression) : intuition

bb1 bb2 bb3 bb4 bh97 bb98 bb1 bb2 bb3 bb4 bb97 bb9s bb3 bb1 bbog bb2 bbd4 bba7 bb3 bb1 bbos bb2 bb4 bbS7
0
0
0
NMS algorithm set
Set zero : scores to zero for
Sort d d 0
if score < thresh1 (0.2) ort descending redundant bboxes
..........................
0
0
0 0o 0 0 o 0 ©
20x1 20x1

[

class = max_index(scores for bb3);
score = max(scores for bb3);

/

° skip bbox

Score > 0

draw bbox with class color
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bb1 bbZ bb3 bb4

bb37 bb98 bb1 bb2 bb3 bb4 bb97 bb98 bb3 bb1 bbos bb2 bb4 bba7 bb3 bb1 bb9s bb2 bb4 bb97
0
0
0
NMS algorithm set
Set zero : scores o zero for
Sort d d 0
if score < thresh1 {0.2) orl descending redundant bboxes
...........................
0
0
0 0 0 0 0 0 0 0 0 0
20x1 20x1 ' |
class = max_index(scores for bb1);
score = max(scores for bb1);

no
9 skip bbox Score = 0

draw bbox with class calor
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bb1 bb2 bb3 bb4 bb97 bb98 bb1 bb2 bb3 bbd bb97 bbag bb3 bb1 bbo8 bb2 bbd4 bb97 bb3 bb1 bhos bb2 bb4 bbo7
ol
0
0
NMS algorithm set |
Set zero . scores to zero for |
Sortd d 0
if score < thresh1 (0.2) ot descending redundant bboxes
..............
0
0
0 0 1] 0 0 0 0 0 0 0
20x1 ; - 20x1 R g \

class = max_index(scores for bb98);
score = max(scores for bb98);

no
e skip bbox

draw bbox with class color



deepsystems.io

—

Yolo v1 — You Only Look Once 23| At=]deepsystems.io

NMS (Non-Maximum Suppression) : intuition

bb1 bb2 bb3 bb4 bbg7 bb9s bb1 bb2 bb3 bb4 bbS7 bb98 bb3 bbl bb9g bb2 bb4 bb97 bb3 bb1 bb98 bb2 bb4 bb97
0
0
0
NMS algorithm set
Set zero " scores to zero for |
Sort d d 0
if score < thresh1 (0.2) It Sesgendng redundant bboxes
------- > > .
0
0
0 0 0 o] lo] Jo 0 0o 0 0
20x1 20x1 /
class = max_index(scores for bb97);
score = max(scores for bb97);

e skip bbox Score > 0

draw bbox with class color
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bb1 bb2 bb3 bb4 bb97 bb98 bb1 bb2 bb3 bb4 bb97 bbo8 bb3 bb1 bbog bbZ bb4 bb97 bb3 bb1 bb98 bb2 bh4 bb97
'NMS algorithm set
Set zero : scores to zero for
Sort d d
if score < thresh1 (0.2) OrLdesueliding ' redundant bboxes
....... EETRRTRS s sansssn 1 . cransas
0 (] 0 o| fo} 1o
2001 T 20x1 - o o




Yolo v1 — You Only Look Once 23| At=]deepsystems.io

deepsystems.io

——

Key Points

ak~wh=

Fast: YOLO - 45 fps, YOLO-tiny - 155 fps.

End-to-end training.

Makes more localization errors but is less likely to predict false positives on background
Performance is lower than the current state of the art.

Combined Fast R-CNN + YOLO model is one of the highest performing detection
methods.

Learns very general representations of objects: it outperforms other detection methods,
including DPM and R-CNN, when generalizing from natural images to other domains
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