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Figure 1: Model FLOPs vs. COCO accuracy — All numbers are for single-
model single-scale. Our EfficientDet achieves new state-of-the-art 55.1%

COCO AP with much fewer parameters and FLOPs than previous detectors.

Mingxing Tan, Ruoming Pang, Quoc V. Le, “EfficientDet: Scalable and

23| Xt2] [PR-217] EfficientDet : Scalable and Efficient Object Detection, Jin Won Lee

https://hoya012.qithub.io/blog/EfficientDet-Review/

Abstract

* Model efficiency has become increasingly important in computer vision.

+ We systematically study neural network architecture design choices
for object detection and propose several key optimizations to
improve efficiency.

v First, we propose a weighted bi-directional feature pyramid network
(BiFPN), which allows easy and fast multiscale feature fusion;

v' Second, we propose a compound scaling method that uniformly
scales the resolution, depth, and width for all backbone, feature
network, and box/class prediction networks at the same time.

* Based on these optimizations and better backbones, we have
developed a new family of object detectors, called EfficientDet,
which consistently achieve much better efficiency than prior art across
a wide spectrum of resource constraints.

* In particular, with single model and single-scale, our EfficientDet-D7
achieves state of-the-art 55.1 AP on COCO test-dev with 77M
parameters and 410B FLOPs1, being 4x — 9x smaller and using 13x —

42x fewer FLOPs than previous detectors.
4
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Introduction

» State of-the-art object detectors become increasingly more Natural question
expensive.

v' For example, the latest AmoebaNet-based NAS-FPN detector
[45] requires 167M parameters and 3045B FLOPs (30x more
than RetinaNet [24]) to achieve state-of the-art accuracy

Is it possible to build a scalable detection architecture with both
higher accuracy and better efficiency across a wide spectrum of

resource constraints (e.g., from 3B to 300B FLOPs)?
* Given these real-world resource constraints such as robotics and

self-driving car, model efficiency becomes increasingly important
for object detection.

v" Such as one-stage [27,33,34,24] and anchor-free detectors
[21,44,40], or compress existing models [28,29].

 Although previous methods tend to achieve better efficiency, they
usually sacrifice accuracy. Moreover, most previous works only
focus on a specific or a small range of resource requirements,
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Introduction

Two Challenges

Challenge 1: Efficient multi-scale feature fusion Challenge 2: Model Scaling

* FPN has been widely used for multi-scale feature fusion. * Inspired by EfficientNet, we propose a compound scaling method for

- PANet [26], NAS-FPN [10], and other studies [20,18,42] have object detectors, which jointly scales up the resolution/depth/
developed more network structures for cross-scale feature fusion. width for all backbone, feature network, box/class prediction network.

* Most previous works simply sum them up without distinction;

* However, they usually contribute to the fused output feature
unequally.

— To address this issue, we propose a simple yet highly effective
weighted bi-directional feature pyramid network (BiFPN), which
introduces learnable weights to learn the importance of different
input features, while repeatedly applying top-down and bottom-up
multi-scale feature fusion.

» Combining EfficientNet backbones with BiFPN and compound
scaling — EfficientDet
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BiFPN : Problem Formulation

+ Multi-scale feature fusion aims to aggregate features at different - FPN takes level 3-7 input features P™ = (Pi", -, P), where P
resolutions. represents a feature level with resolution of 1/2' of the input images.
« Formally, given a list of multi-scale features P = (Pzif,Pzizn‘ ), - For instance, if input resolution is 640x640, then Pi" represents
where Pi™ represents the feature at level I;, our goal is to find a feature level 3 (640/2° = 80) with7resoluti_on 80x80, while P;"
transformation f that can effectively aggregate different features and represents feature level 7 (640/2" = 5) with resolution 5x5.
output a list of new features: POUt = f(Bin).  The conventional FPN aggregates multi-scale features in a top-

down manner:

(a) Featurized image pyramid : !

Pg** = Conv(Fg" + Resize(P7™))

Pyt = Conv(Py" + Resize(P{™"))
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BiFPN : Cross-Scale Connections

* PANet [26] adds an extra bottom-up path aggregation network. < PANet

* NAS-FPN [10] employs neural architecture search to search for - Augmenting a top-down path propagates semantically strong
better cross-scale feature network topology, but it requires features and enhances all features with reasonable classification
thousands of GPU hours during search and the found network is capability in FPN
irregular and difficult to interpret or modify.

* Augmenting a bottom-up path of low-level patterns based on the
repeated blocks fact that high response to edges or instance parts is a strong
indicator to accurately localize instances.

P7

Pe

Ps (O

Ps OO

(b) PANet (c) NAS-FPN Path Aggregation Network for Instance Segmentation, 2018

Figure 2. (b) PANet [26] adds an additional bottom-up pathway on top of FPN; (c)
NAS-FPN [10] use neural architecture search to find an irregular feature network
topology and then repeatedly apply the same block 8



EfficientDet 43| X}2] [PR-217] EfficientDet : Scalable and Efficient Object Detection, Jin Won Lee
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all cross-scale connections
. . . The Original RetinaNet NAS-FPN
» The discovered architecture, named NAS-FPN, consists of a —
combinations of top-down and bottom-up connections to fuse e
features across scales. Feature
Pyramid

RetinaNet with NAS-FPN

lass+bo:
Network

XN

(
(]
|r — Ea ._ repeated blocks
]i." .

R
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BiFPN : Cross-Scale Connections

« PANet achieves better accuracy than FPN and NAS-FPN, but with * Second, we add an extra edge from the original input to output
the cost of more parameters and computations. node if they are at the same level, in order to fuse more features

+ First, we remove those nodes that only have one input edge with without adding much cost;

no feature fusion, then it will have less contribution to feature » Third, unlike PANet [26] that only has one top-down and one bottom-

network that aims at fusing different features. up path, we treat each bidirectional (top-down & bottom-up) path as
one feature network layer, and repeat the same layer multiple
times to enable more high-level feature fusion.

repeated blocks

(b) PANet (e) Simplified PANet (d) BiFPN

10
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BiFPN : Weighted Feature Fusion

* When fusing features with different resolutions, a common way is to
first resize them to the same resolution and then sum them up.

* Pyramid attention network [22] introduces global self-attention
upsampling to recover pixel localization.

 Since different input features are at different resolutions, they usually
contribute to the output feature unequally.

» To address this issue, we propose to add an additional weight for
each input, and let the network to learn the importance of each input
feature. Based on this idea, we consider three weighted fusion
approaches; >

Global Pooling

Low-leveal Features

(Cx1x1)

» Unbounded fusion, Softmax-based fusion, Fast normalized fusion

a3
https:/lys-cs17.tistory.com/31

High-level Features

Global Attention Upsample Module Structure 11
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BiFPN : Weighted Feature Fusion

Unbounded Fusion Fast Normalized Fusion 0=% w; I
O = . 'LU P I — 1 —1 * 3
» where w; is a learnable weight that can be a scalar (per-feature), a
vector (per-channel), or a multi-dimensional tensor (per-pixel). » where w; > 0 is ensured by applying a Relu after each w;, and € =

- We find a scale can achieve comparable accuracy to other 0:0001 is a small value to avoid numerical instability.

approaches with minimal computational costs. However, since the » Our ablation study shows this fast fusion approach has very similar
scalar weight is unbounded, it could potentially cause training learning behavior and accuracy as the softmax-based fusion, but
instability. runs up to 30% faster on GPUs

» Therefore, we resort to weight normalization to bound the value
range of each weight.

Softmax-Based Fusion e™i
O=> =1L
1 ZJ ffwj

» An intuitive idea is to apply softmax to each weight, such that all
weights are normalized to be a probability with value range from 0 to
1, representing the importance of each input.

* However, the extra softmax leads to significant slowdown on GPU
hardware. To minimize the extra latency cost, we further propose a
fast fusion approach.
12
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BiFPN

» Our final BiFPN integrates both the bidirectional cross-scale
connections and the fast normalized fusion.

wy - P + we - Resize( Pin
Péd—COﬂ‘U( L fG W (Fr ))

wy 4+ w2 +€
w) - P + wh - P+ wh - Resize( P
wi + wh +wh + €

Pg" = Conv (

« where Pt¢ is the intermediate feature at level 6 on the top-down
pathway, and P2%" is the output feature at level 6 on the bottom-up
pathway.

+ To further improve the efficiency, we use depthwise separable (f) BIFPN
convolution [7, 37] for feature fusion.

13
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EfficientDet Architecture

« ImageNet-pretrained EfficientNets as the backbone network.

» Our proposed BiFPN serves as the feature network, which takes level 3-7 features {P;, P,, Ps, Ps, P;} from the backbone
network and repeatedly applies top-down and bottom-up bidirectional feature fusion. These fused features are fed to a
class and box network to produce object class and bounding box predictions respectively

* The class and box network weights are shared across all levels of features

> 1 > ( ) 1
P,/ 128 5 i
. : il
O SO - O =4 |
P5 | 64 # 1 1 = . \\"(conv)—p(conv)—l—p
| 1
1 N A e o e e e e e = a
L - | | - = N Ay
Ps/32 1 1 : O O 4 AN e S .
A o s 1
> : > > : > > > »@ - i ‘/M’@_:_’
P,/ 16 * : : ¢ R i e "
1 ! e Box prediction net
~O- ' :
1 1
Ps/8 e s o ¥
P, /4 BiFPN Layer
Py 2

Input
EfficientNet backbone

Figure 3: EfficientDet architecture — It employs EfficientNet [39] as the backbone network, BiFPN as the feature network, and shared class/box prediction network.
Both BiFPN layers and class/box net layers are repeated multiple times based on different resource constraints as shown in Table 1. 14



EfficientDet — Compound Scaling

* How to scale up a baseline EfficientDet model.

* Inspired by EfficientNet, we propose a new compound scaling
method for object detection, which uses a simple compound
coefficient ¢ to jointly scale up all dimensions of backbone, BiFPN,
class/box network, and resolution.

* Unlike [39], object detectors have much more scaling dimensions
than image classification models, so grid search for all dimensions is
prohibitive expensive.

» Therefore, we use a heuristic-based scaling approach, but still follow
the main idea of jointly scaling up all dimensions.

EfficientDet gtz X}2] [PR-217] EfficientDet : Scalable and Efficient Object Detection, Jin Won Lee

Backbone network
v' Same width/depth scaling coefficient of EfficientNet BO to B6.
BiFPN network

v' Exponentially grow BiFPN width Wy, (#channels), but linearly
increase depth Dy, s, (#layers) since depth needs to be rounded
to small integers.

Whifpn =64+ (1.35%) . Dyijpn =3+ 0

Box/class prediction network
v' Fix their width to always the same as BiFPN (i.e., Wyyeq = Whifpm)

v But, linearly increase the depth (#layers) using equation:
Dbox = Dclass =3+ |.<D/3J

Input image resolution

v Since feature level 3-7 are used in BiFPN, the input resolution
must be dividable by 27=128

Rinput = 512+ ¢ - 128

15
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EfficientDet — Compound Scaling

Table 1: Scaling configs for EfficientDet D0-D6 — ¢ the

+ Following Equations 1,2,3 with different ¢, we have developed compound coefficient that controls all other scaling dimensions;
EfficientDet-DO0 (¢=0) to D7 (¢=0) as shown in Table 1, where D7 BiFPN, box/class net, and input size are scaled up using equation
and D7x have the same BiFPN and head, but D7 uses higher 1, 2, 3 respectively.
resolution and D7x uses larger backbone network and one more
feature level (from P3 to P8) Input Backbone BiFPN Box/class

o L . size Network  #channels #layers  #layers

* Notably, our compound scaling is heuristic-based and might not be Rinput Wiifon  Doifpn  Delass
optimal, but we will show that this simple scaling method can 50— 2 0 ” 2 2
significantly improve efficiency than other single-dimension scaling D1 E?) B 1; 640 B1 a8 4 3
methods in Figure 6. D2 ((;,j —2) | 768 B2 112 5 3

D3 (¢ = 3) 896 B3 160 6 4
D4 (¢ = 4) 1024 B4 224 7 4
D5 (¢ = 5) 1280 B5 288 7 4
D6 (6 =6) | 1280 B6 384 8 5
D7 (¢ =17) 1536 B6 384 8 5
D7x 1536 B7 384 8 5

16



EfficientDet — Compound Scaling

Backbone Network #channels
(EfficientNet BO ~ B6) Whifpm = 64 - (1.35%) #channels
B s g " Wpred = Wbifpn
: O< .
P08 Class prediction net
T N Y " V. e T Yt it -.
e S A ® \\1\ = :
popan i g, q e e
/ /( ____________ 4
Ps5/32 =—————— >0 I .ag /\'{,\ ____________ 4
Iy *2 1
e T /:./--
Pa/ 16 ! ! iy e —— -
-
1 1 s Box prediction net
. -
P3/8 ... ! \ J
P, /4 BiFPN Layer Y
P1/2 \ \ } #layers
Input Dpox = =3+ [¢/3]
EfficientNet backbone box = Deiass =
#layers
Input resolution Dyifpm =2+ ¢

Rinput = 512 + ¢ - 128
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Experiment
test-dev val Latency (ms) Table 2: EfficientDet performance on

Model AP APy AP;5 | AP || Params Ratio FLOPs Ratio || TitianV V100 COCO [25] — Results are for single-model
EfficientDet-D0 (512) 346 530 370 | 343 | 39M  Ix 25B  Ix 12 10.2 single-scale. fest-dev is the COCO test set
YOLOV3 [4] 33.0 57.9 34.4 _ _ _ 71B 28x _ _ and val is the validation set. Params and

- : ; ; . : : : - FLOPs denote the number of parameters
Efﬁ_a:lentDet-Dl {640)‘ 40.5 59.1 437 | 40.2 6.6M Ix 6.1B Ix 16 13.5 and multiply-adds. Latency is for inference
RetfnaNet—RSO (640) [_‘IJr] 392 580 423 | 392 34M  6.7x 97B  16x 25 - with batch size 1. AA denotes auto-
RetinaNet-R101 (640)[2-] 399 585 430 | 3938 53M  8.0x 127B  21x 32 - augmentation [45]. We group models
EfficientDet-D2 (768) 439 627 476 | 435 8.1M Ix 11B Ix 23 17.7 together if they have similar accuracy, and
Detectron2 Mask R-CNN R101-FPN [1] - - - 429 63M  7.7x 164B  15x - 561 compare their model size, FLOPs, and
Detectron2 Mask R-CNN X101-FPN [ 1] - - - 443 107TM 13x 277B  25x - 103+ latency in each group.
EfficientDet-D3 (8§96) 47.2 659 512 | 46.8 12M Ix 25B Ix 37 29.0
ResNet-50 + NAS-FPN (1024) [10] 44.2 - - - 60M  5.1x 360B  15x 64 -
ResNet-50 + NAS-FPN (1280) [10] 44.8 - - - 60M  5.1x 563B  23x 99 -
ResNet-50 + NAS-FPN (1280@384)[ 10] || 45.4 - - - 104M  8.7x  1043B  42x 150 -
EfficientDet-D4 (1024) 49.7 684 539 | 493 21IM Ix 55B Ix 65 42.8
AmoebaNet+ NAS-FPN +AA(1280)[+5] - - - 48.6 185M  8.8x 1317B 24x 246 -
EfficientDet-D5 (1280) 515 705 561 | 51.3 34M Ix 135B Ix 128 72.5
Detectron2 Mask R-CNN X152 [1] - - - 50.2 - - - - - 234%
EfficientDet-D6 (1280) 526 715 572 | 522 52M Ix 226B Ix 169 92.8
AmoebaNet+ NAS-FPN +AA(1536)[+5] - - - 50.7 209M 4.0x 3045B  13x 489 -
EfficientDet-D7 (1536) 537 724 584 | 534 52M 325B 232 122
EfficientDet-D7x (1536) 551 743 599 | 544 7™ 4108 285 153
We omit ensemble and test-time multi-scale results [30, 12]. RetinaNet APs are reproduced with our trainer and others are from papers.

fLate ncy numbers with ¥ are from detectron2, and others are measured on the same machine (TensorFlow2.1 + CUDA10.1, no TensorRT). 18
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Experiment
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Figure 4. Model size and inference latency comparison — Latency is measured with batch size 1 on the same machine equipped
with a Titan V GPU and Xeon CPU. AN denotes AmoebaNet + NAS-FPN trained with auto-augmentation [45]. Our EfficientDet
models are 4x - 9x smaller, 2x - 4x faster on GPU, and 5x - 11x faster on CPU than other detectors.
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Ablation Study

Disentangling Backbone and BiFPN BiFPN CrossScale Connections
‘ AP  Parameters FLOPs AP #Params #FLOPs
ResNetS0 + FPN 370  34M 97B ratio ratio
EfficientNet-B3 + FPN 40.3 2IM 75B Repeated top-down FPN | 42.29 1.0x 1.0x
EfficientNet-B3 + BiFPN | 44.4 12M 24B Repeated FPN+PANet | 44.08 1.0x 1.0x
NAS-FPN 43.16 0.71x 0.72x
Table 4: Disentangling backbone and BiFPN — Starting from Fully-Connected FPN 43 .06 1.24x 1.21x
the standard RetinaNet (ResNet50+FPN), we first replace the . .
backbone with EfficientNet-B3, and then replace the baseline BEFPN (w/o w.elghted) 43.4 0.88x 0.67x
FPN with our proposed BiFPN BiFPN (W/ WElghtEd) 44.39 0.88x 0.68x

Table 5: Comparison of different feature networks — Our

Softmax vs Fast Normalized Fusion weighted BiFPN achieves the best accuracy with fewer
parameters and FLOPs

Softmax Fusion  Fast Fusion
Model AP AP (delta) Speedup
Modell 33.96 33.85(-:0.11) 1.28x Table 6: Comparison of different feature fusion — Our fast
Model2 43.78 43.77 (-0.01) 1.26x fusion achieves similar accuracy as softmax-based fusion, but
Model3 48.79 48.74 (-0.05) 1.31x runs 28% - 31% faster

20
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Ablation Study Conclusions

Compound Scaling
* Propose a weighted bidirectional feature network and a

461 customized compound scaling method, in order to improve
accuracy and efficiency.
444  EfficientDet-D7 achieves state-of-the-art 51.0 mAP on COCO
dataset with 52M parameters and 326B FLOPs, being 4x smaller and
19- using 9.3x fewer FLOPS yet still more accurate (+0.3% mAP) than the
best previous detector.
o
< 40  EfficientDet is also up to 3.2x faster on GPUs and 8.1x faster on
3 GPUs.
O
O 381
26 et e Compound Scaling
4!" » Scale by image size
x  Scale by #channels
4 < Scale by #BiFPN layers
a  Scale by #box/class layers
10 2 30 10 50 60

FLOPs (B)

Figure 6: Comparison of different scaling methods — compound scaling
achieves better accuracy and efficiency.
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