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ControlNet, a neural network architecture to add spatial conditioning controls to large, pretrained text-to-image

diffusion models.

Reuses their deep and robust encoding layers pretrained with billions of images to learn a diverse set of
conditional controls.

Connected with “zero convolutions” (zero-initialized convolution layers) that progressively grow the parameters
from zero and ensure that no harmful noise could affect the finetuning.

Test various conditioning controls, e.g., edges, depth, segmentation, human pose, etc.

The training of ControlNets is robust with small (<50k) and large (>1m) datasets.

Extensive results show that ControlNet may facilitate wider applications to control image diffusion models.
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Input human pose Default “chef in kitchen” “Lincoln statue”
Figure 1: Controlling Stable Diffusion with learned conditions. ControlNet allows users to add conditions like Canny edges
(top), human pose (bottom), efc., to control the image generation of large pretrained diffusion models. The default results use
the prompt “a high-quality, detailed, and professional image”. Users can optionally give prompts like the “chef in kitchen”.



ControlNet

ControlNet is a neural network architecture that can
enhance large pretrained text-to-image diffusion
models with spatially localized.

ControlNet injects additional conditions into the
blocks of a neural network.

network block to refer to a set of neural layers that
are commonly put together to form a single unit of a
neural network.

Suppose F(-; O) is such a trained neural block, with
parameters O, that transforms an input feature map

X, into another feature map y as

y = F(x;0). 1)
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Figure 2: A neural block takes a feature map x as input and
outputs another feature map y, as shown in (a). To add a
ControlNet to such a block we lock the original block and
create a trainable copy and connect them together using zero
convolution layers, i.e., 1 X 1 convolution with both weight
and bias 1nitialized to zero. Here c is a conditioning vector
that we wish to add to the network, as shown in (b).



ControlNet

* lock (freeze) the parameters O of the original block c
and simultaneously clone the block to a trainable copy zero conlvolution
with parameters Oc. T I >? i
* Applied to large models Stable Diffusion, the locked [neurillgiwork] [nﬁﬁzfasx:gg [ trainable copy ]
parameters preserve the production-ready model l (J? zero con:volution
trained with billions of images. Y y 7 ccorenlkisr
* The trainable copy is connected to the locked model (a) Before (b) After

Figure 2: A neural block takes a feature map x as input and
outputs another feature map y, as shown in (a). To add a
up a ControlNet, we use two instances of zero ControlNet to such a block we lock the original block and
create a trainable copy and connect them together using zero
convolution layers, i.e., 1 X 1 convolution with both weight

respectively. The complete ControlNet then computes  and bias initialized to zero. Here c is a conditioning vector
that we wish to add to the network, as shown in (b).

Yec = -F(m, 9) T+ Z(‘F(m I Z(C; 911)§ ec); 822)7 (2)

with zero convolution layers, denoted Z(-; -). To build

convolutions with parameters ©z1 and ©z2
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Both the encoder and decoder contain 12 blocks, and the full
model contains 25 blocks, including the middle block.

Of the 25 blocks, 8 blocks are down-sampling or up-sampling
convolution layers, while the other 17 blocks are main blocks
that each contain 4 resnet layers and 2 Vision Transformers
(ViTs)

“SD Encoder Block A” contains 4 resnet layers and 2 ViTs

Figure 3: Stable Diffusion’s U-net architecture connected
with a ControlNet on the encoder blocks and middle block.
The locked, gray blocks show the structure of Stable Diffu-
sion V1.5 (or V2.1, as they use the same U-net architecture).
The trainable blue blocks and the white zero convolution
layers are added to build a ControlNet.



Given an input image 20, image diffusion algorithms
progressively add noise to the image and produce a noisy
image zt, where t represents the number of times noise is
added. Given a set of conditions including time step t,
text prompts ct, as well as a task-specific condition cf,
image diffusion algorithms learn a network € to predict
the noise added to the noisy image zt with

L=E. te, ce~N(01) U|€ — €0(2t,t, ¢t cr)) ||3J>
Where L is the overall learning objective of the entire
diffusion model.
Randomly replace 50% text prompts ct with empty
strings. This approach increases ControlNet’s ability to

directly recognize semantics
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Figure 4: The sudden convergence phenomenon. Due to the
zero convolutions, ControlNet always predicts high-quality
images during the entire training. At a certain step in the
training process (e.g., the 6133 steps marked in bold), the
model suddenly learns to follow the input condition.



We can further control how the extra conditions of
ControlNet affect the denoising diffusion process in
several ways.

Classifier-free guidance resolution weighting. CFG is
formulated as eprd = euc + Bcfg(ec - euc) where eprd, euc,
ec, Bcfg are the model’s final output, unconditional
output, conditional output, and a user-specified weight
respectively.

Composing multiple ControlNets. To apply multiple
conditioning images (e.g., Canny edges, and pose) to a

single instance of Stable Diffusion

(a) Input Canny map (b) W/o CFG (c) W/o CFG-RW (d) Full (w/o prompt)

Figure 5: Effect of Classifier-Free Guidance (CFG) and the
proposed CFG Resolution Weighting (CFG-RW).
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Multiple condition (pose&depth) “boy” “astronaut”
Figure 6: Composition of multiple conditions. We present
the application to use depth and pose simultaneously.



Sketch Normal map Depth map Canny[!!]edge M-LSD[24] line HED["Y!]edge @ ADE20k[V0] seg. Human pose

Figure 7: Controlling Stable Diffusion with various conditions without prompts. The top row is input conditions, while all
other rows are outputs. We use the empty string as input prompts. All models are trained with general-domain data. The model
has to recognize semantic contents in the input condition images to generate images.
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Figure 8: Ablative study of different architectures on a sketch condition and different prompt settings. For each setting, we
show a random batch of 6 samples without cherry-picking. Images are at 512 x 512 and best viewed when zoomed in. The
green “conv” blocks on the left are standard convolution layers initialized with Gaussian weights.
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Method Result Quality T Condition Fidelity T
PITI [%9](sketch) 1.10 + 0.05 1.02 + 0.01
Sketch-Guided [55] (8 = 1.6) 321 +0.62 231 057
Sketch-Guided [25] (8 = 3.2) 252+ 044 328 +0.72
ControlNet-lite 3.93 £0.59 4.09 + 0.46
ControlNet 4.22 +0.43 4.28 + 0.45

Table 1: Average User Ranking (AUR) of result quality and
condition fidelity. We report the user preference ranking (1
to 5 indicates worst to best) of different methods.

ADE20K (GT) VQGAN[IY] LDM[72] PITI[$9] ControlNet-lite ControlNet
058+0.10 021+015 031+£009 026+0.16 032+012 035+0.14

Table 2: Evaluation of semantic segmentation label recon-
struction (ADE20K)) with Intersection over Union (IoU 7).

Method FID | CLIP-score T CLIP-aes. T

Stable Diffusion 6.09 0.26 6.32
VQGAN [19](seg.)* 26.28 0.17 5.14
LDM [72](seg.)* 25:35 0.18 5.15
PITI [59](seg.) 19.74 0.20 5T
ControlNet-lite 17.92 0.26 6.30
ControlNet 15.27 0.26 6.31

Table 3: Evaluation for image generation conditioned by
semantic segmentation. We report FID, CLIP text-image
score, and CLIP aesthetic scores for our method and other
baselines. We also report the performance of Stable Diffu-
sion without segmentation conditions. Methods marked with

“# are trained from scratch.
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Input (sketch)

PITI

Ours (default)

“golden retriever”

Input (sketch)  Sketch-Guided

Input (canny)  Taming Tran.  Ours (default) W:::i;:i‘ilpa

Figure 9: Comparison to previous methods.We present the
qualitative comparisons to PITI [£9], Sketch-Guided Diffu-
sion [5%], and Taming Transformers [ Y].
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Input “a high-quality and extremely detailed image”

Figure 11: Interpreting contents. If the input is ambiguous
and the user does not mention object contents in prompts,
the results look like the model tries to interpret input shapes.

“Lion” 1k images 50k 1mages 3m 1mages

Figure 10: The influence of different training dataset sizes.
See also the supplementary material for extended examples.
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Figure 12: Transfer pretrained ControlNets to community
models [ |6, 61] without training the neural networks again.
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