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Latent Consistency Models

Abstract (Paper)

» Latent Diffusion models (LDMs) « Efficiently distilled from pre-trained classifier-free guided
diffusion models, a high-quality 768 x 768 2~4-step LCM takes
only 32 A100 GPU hours for training.

* Furthermore, introduce Latent Consistency Fine-tuning (LCF), a
novel method that is tailored for fine-tuning LCMs on customized
image datasets.

v' Remarkable results in synthesizing high-resolution images.

v However, Iterative sampling process - Computationally intensive
and leads to slow generation.

* Inspired by Consistency Models (song et al.),

* Propose Latent Consistency Models (LCMs), - Evaluation on the LAION-5B-Aesthetics dataset demonstrates that
v Enabling swift Inference with minimal steps on any pre-trained LCMs achieve state-of-the-art text-to-image generation
LDMs, including Stable Diffusion (rombach et al). performance with few-step inference.
* Viewing the guided reverse diffusion process as solving an * Project Page: https://latent-consistency-models.qgithub.io/

augmented probability flow ODE (PF-ODE),

* LCMs are designed to directly predict the solution of such ODE in
latent space, mitigating the need for numerous iterations and
allowing rapid, high-fidelity sampling.



Latent Consistency Models

https://latent-consistency-models.github.io/
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LCMs can be distilled from any pre-trained Stable Diffusion (SD) in only
4,000 training steps (~32 A100 GPU Hours) for generating high quality 768 201
X 768 resolution images in 2~4 steps or even one step, significantly 251 2-5teps 4.steps Tl __ Bsteps
accelerating text-to-image generation. We employ LCM to distill the 0z 3 i = ; s

Dreamshaper-V7 version of SD in just 4,000 training iterations. Inference Time {second) 4



Latent Consistency Models

1 Introduction & 2. Related Works

> Diffusion Models » Accelerating DMs
» Compared to VAEs and GANSs, diffusion models enjoy the benefit of O Training-free methods such as
training stability and better likelihood estimation. - ODE solvers : Song et al., 2020a, DPIM: Lu et al., 2022a:b, DPM-
* Be trained to denoise the noise-corrupted data to estimate the Solver, DPM-Solver++
score of data distribution. « Adaptive step size solvers : Jolicoeur-Martineau et al., 2021, Gotta
« During inference, draw samples by running the reverse diffusion go fast when generating data with score-based models.
process to gradually denoise the data point. « Predictor-corrector methods : Song et al., 2020b, Score-based
« Bottlenecked by their slow generation speed generative modeling through stochastic differential equations
O Training-based approaches include
- Hoetal., 2020, DDPM, Denoising Diffusion Probabilistic Models * Optimized discretization : Watson et al., 2021, Learning to
- Song et al., 2020a, DPIM, Denoising Diffusion Implicit Models efficiently sample from diffusion probabilistic models
- Nichol & Dhariwal, 2021, iDDPM, Improved Denoising Diffusion * Truncated diffusion : Lyu et al., 2022; Zheng et al., 2022,
Probabilistic Models « Neural operator : Zheng et al., 2023, Fast sampling of diffusion
- Ramesh et al., 2022, DALL-E2, Hierarchical Text-Conditional Image models via operator learning
Generation with Clip Latents « Distillation : Salimans & Ho, 2022, Progressive distillation for fast
- Rombach et al., 2022, Stable Diffusion, High-Resolution Image sampling of diffusion models; Meng et al., 2023, On distillation of
Synthesis with Latent Diffusion Models guided diffusion models
- Song & Ermon, 2019. Generative Modeling by Estimating Gradients of O More recently, new generative models for faster sampling have
the Data Distribution also been proposed (Liu et al., 2022; 2023).
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Latent Consistency Models

1 Introduction & 2. Related Works

» Latent Diffusion Models (LDMs) » Consistency Models (CMs)

» Synthesizing high-resolution text-to-images. * A new type of generative model for faster sampling while

« Ex) Stable Diffusion (SD) performs forward and reverse diffusion preserving generation quality.
processes in the data latent space, resulting in more efficient » CMs adopt consistency mapping to directly map any point in
computation. ODE trajectory to its origin, enabling fast one-step generation.

» CMs can be trained by distilling pre-trained diffusion models or

Synthesis with Latent Diffusion Models

- Song et al., 2023, Consistency Models

+ CMs constrained to pixel space image generation tasks, making
it unsuitable for synthesizing high-resolution images.

* Moreover, the applications to the conditional diffusion model and
the incorporation of classifier-free guidance have not been
explored, rendering their methods unsuitable for text-to-image
generation synthesis.



Latent Consistency Models

1 Introduction & 2. Related Works

+ Classifier Free Guidance : Classifier-free diffusion guidance

- Jonathan Ho, Tim Salimans, Classifier-Free Diffusion Guidance,

NIPS2021, Google Research, Brain team C|0w¥ier GMdunce | CION‘FIQI’ FYBE Gm.‘ldl)n(ﬁ

+ Diffusion Models Beat GANs on Image Synthesis =& : [ [Clossifer | —— Grodient,

x = = = v g Vi, log pa(yl|xe, t — . —
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Latent Consistency Models

Main Contributions

O Latent Consistency Models (LCMs) for fast, high-resolution O Propose Latent Consistency Finetuning, which allows fine-tuning
image generation. a pre-trained LCM to support few-step inference on customized
« LCMs employ consistency models in the image latent space, image datasets while preserving the ability of fast inference.

enabling fast few-step or even one-step high-fidelity sampling
on pre-trained latent diffusion models (e.g., Stable Diffusion
(SD)).

O Provide a simple and efficient one-stage guided consistency
distillation method

« to distill SD for few-step (2~4) or even 1-step sampling

« to efficiently convert a pre-trained guided diffusion model into a
latent consistency model by solving an augmented PF-ODE.

* Propose the SKIPPING-STEP technique to further accelerate the
convergence.

* For 2- and 4-step inference, our method costs only 32 A100 GPU
hours for training and achieves state-of-the-art performance



3. PRELIMINARIES

«* Diffusion Models

O Diffusion models, or score-based generative models

* Progressively inject Gaussian noises into the data, and then
generate samples from noise via a reverse denoising process

* Define a forward process transitioning the origin data distribution

Paata (x) to marginal distribution g, (x;), via transition kernel:
Qoe (x¢|xo) = N(x¢|a(t)xg, a2 (t)D),
* a(t), o(t) specify the noise schedule.
O In continuous time perspective, the forward process can be

described by a stochastic differential equation (SDE) for t € [0,
T]: (= Song et al. (2020b); Lu et al. (2022a); Karras et al. (2022))

dx, = f()x.dt + g(t)dw,, Xo~Paata(Xo)

* w(t) is the standard Brownian motion

fiay = 1B g2y = 4D pdlo8al 2y g

Latent Consistency Models

(O By considering the reverse time SDE,

» the marginal distribution g;(x) satisfies the following ordinary
differential equation, called the Probability Flow ODE (PF-ODE)
(= Song et al., 2020b; Lu et al., 2022a):

l; 1 5

O In diffusion models, we train the noise prediction model €g (x;,t) to
fit —Vlogq,(x;) (called the score function).

» Approximating the score function by the noise prediction model in
21, one can obtain the following empirical PF-ODE for sampling:

da; — Pt 4 92(t)

o = zr ~ N (0,5°1). (3)

€ (x4, 1),




Latent Consistency Models

3. PRELIMINARIES

«* Diffusion Models

O For class-conditioned diffusion models,

» Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) :

v" An effective technique to significantly improve the quality of
generated samples

v Has been widely used in several large-scale diffusion models
including GLIDE Nichol et al. (2021), Stable Diffusion (Rombach
et al., 2022), DALL-E 2 (Ramesh et al., 2022) and Imagen
(Saharia et al., 2022).

» Given a CFG scale w, the original noise prediction is replaced by
a linear combination of conditional and unconditional noise
prediction:

€g(z1,w,c,t) = (1 +w)eg(z1, ¢, t) —weg(z,9,1)
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3. PRELIMINARIES

« Consistency Models

O Anew family of generative models

* Enables one-step or few-step generation.

* Core idea : Learn the consistency function that maps any
points on a trajectory of the PF-ODE to that trajectory’s origin
(i.e., the solution of the PF-ODE)

f:(xe,t) — o
€ is a fixed small positive number.
* The consistency function should satisfy the self-consistency
property:.
f(xe,t) = flay,t),VE,t € e, T). (4)

Latent Consistency Models

* (Song et al., 2023) Key idea for learning a consistency model f, : To
learn a consistency function from data by effectively enforcing the
self-consistency property

* Ensure that fy(x, €) = x, the consistency model f, is parameterized
as:

Jo(z.t) = caip(t)a + cou(t) Fo(z, 1), (5)
Cskip (t) @nd ¢,y (t) : Differentiable functions with ¢, (t,€) = 1 and
Cout(€) =0

Fg(x,t) : a deep neural network

* A CM can be either distilled from a pre-trained diffusion model
(known as Consistency Distillation) or trained from scratch

11



3. PRELIMINARIES

« Consistency Models

» To enforce the self-consistency property, we maintain a target model

6~, updated with exponential moving average (EMA) of the
parameter 8, we intend to learn; 6~ < u8~ + (1 — )0

» Define the consistency loss
L£(0,0 ;D) =FEq,: {d (fgf:ctn+1,t-n+1),fg—(:i?f;:tn))} . (6)

d(+) : a chosen metric function for measuring the distance
between two samples; d(x,y) = ||x — y||?

9?21 : a one-step estimation of x, from x, .,

» ® denotes the one-step ODE solver applied to PF-ODE in Eq. 24.
(Song et al., 2023) used Euler (Song et al., 2020b) or Heun solver
(Karras et al., 2022) as the numerical ODE solver

Latent Consistency Models

* Pseudo-code for consistency distillation

Algorithm 2 Consistency Distillation (CD) ngng et al.|[2023]

Input: dataset D, imitial model parameter 6. learning rate 1),
ODE solver ®(-, -, -), distance metric d(-,-), and EMA rate
6~ +— 86
repeat

Sample  ~ D and n ~ U[1, N — 1]

Sample x¢,, ., ~ N (z;t2 1)

i"?n — Ly, b i (tﬂ - tn+1)®($tn+l s tnt1, Cb)

L(8,07;®) « d(fo(@t,,rstnt1)s Fo- (27 1n))
00 —nVel(0,07;D)
0~ <« stopgrad(p0~ + (1 —p)0)

until convergence

12



4. LATENT CONSISTENCY MODELS
s Summary

Consistency Models (CMs) (Song et al., 2023)

+ Only focused on image generation tasks on ImageNet 64 x 64 (Deng
et al., 2009) and LSUN 256 x 256 (Yu et al., 2015).

* Unexplore to generate higher-resolution text-to-image tasks

Latent Consistency Models (LCMs)

+ Adopt a consistency model in the image latent space, similar to * Propose a simple one-stage guided distillation method in Sec
LDMs 4.2 that solves an augmented PF-ODE, integrating CFG into LCM
+ Choose the Stable Diffusion (SD) as the underlying diffusion model effectively.

to distill from. * Propose SKIPPING-STEP technique to accelerate the

» Aim to achieve few-step (2~4) and even one-step inference on convergence of LCMs in Sec. 4.3.
SD without compromising image quality.

- . . .  Finally, propose Latent Consistency Fine-tuning to finetune a pre-
The classifier-free guidance (CFG) (Ho & Salimans, 2022)is an trained LCM for few-step inference on a customized dataset in Sec

effective technique to further improve sample quality and is widely 44
used in SD. o



Latent Consistency Models

4.1 LCM : Consistency Distillation in the Latent Space

» LDM : Stable Diffusion (SD) - Image Latent Space (Rombach et al., » For LCMs, we leverage the advantage of the latent space for
2022) consistency distillation, contrasting with the pixel space used
- Utilizing image latent space in large-scale diffusion models has in CMs (Song et al., 2023).
effectively enhanced image generation quality and reduced » Termed Latent Consistency Distillation (LCD) is applied to pre-
computational load. trained SD, allowing the synthesis of high-resolution (e.g., 768 X 768)
. SD images in 1~4 steps.

- An autoencoder (E, D) is first trained to compress high-dim image * We focus on conditional generation.

data into low-dim latent vector z = E'(x), which is then decoded to
reconstruct the image as x = D(2).

- Training diffusion models in the latent space greatly reduces
the computation costs compared to pixel-based models and
speeds up the inference process;

+ LDMs make it possible to generate high-resolution images on laptop
GPUs.

14



4.1 LCM : Consistency Distillation in the Latent Space

» Recall that the PF-ODE of the reverse diffusion process (Song et al.,
2020b; Lu et al., 2022a)

2
dzt f(thl =+ g (t)Eul::.(."./). ZT NN(O&QI) (8)

dt a 20'1:

- z, are image latents
- €g(z;, ¢, t) is the noise prediction model
- cis the given condition (e.g text)

« Samples can be drawn by solving the PF-ODE from T to O.

Latent Consistency Models

» To perform LCD, introduce the consistency function fy: (z;, ¢, t) —
z, to directly predict the solution of PF-ODE (Eq. 8) for t = 0.

+ We parameterize f, by the noise prediction model &g,

z —oi€p(z, 0, 1)

). (e-Prediction) (9)

Jo(2z,¢,t) = caip(t)z + cou(t) (

Qg

- Cskip(o) =1 and Cout(O) =0

- €g(z;, ¢, t) - anoise prediction model that initializes with the
same parameters as the teacher diffusion model

* fo can be parameterized in various ways, depending on the teacher
diffusion model parameterizations of predictions = Appendix D.

15



Latent Consistency Models

4.1 LCM : Consistency Distillation in the Latent Space

» Recall that the PF-ODE of the reverse diffusion process

dz g3 (t)
== t
dt f( )zt T 20'1;

€o (zi,¢,t), zr ~N(0,6°I), (8)

« Assume that an efficient ODE solver ¥(z,,t, s, c) is available for
approximating the integration of the right-hand side of Eq (8) from
time t to s.

* In practice, we can use DDIM (Song et al., 2020a), DPM-Solver (Lu
et al., 2022a) or DPM-Solver++ (Lu et al., 2022b) as ¥(, -, -, *).

* Note that we only use these solvers in training/distillation, not in
inference

+»» Discuss these solvers further when we introduce the SKIPPING-
STEP technique in Sec. 4.3

» LCM aims to predict the solution of the PF-ODE by minimizing
the consistency distillation loss (Song et al., 2023):

Lop (9.9—; \p) =E.cn [d (fm:f,,fl Bitngt) T B 18t ])] (10)
* 2} :an estimation of the evolution of the PF-ODE from t,,,.; —t,

using ODE solver ¥:

t 2
’ . t
th:l — Ztn41 Z/ (f(t)zt : 3 g ()
tni1

(11)

20’t

€p (Zt, C, t)) dt

~ U(zt, o tnsts tn, ),

* The solver ¥(-, -, -, -) is used to approximate the integration from
tn+1—tn-

16



» Classifier-free guidance (CFG) (Ho & Salimans, 2022)

» Crucial for synthesizing high-quality textaligned images in SD,
typically needing a CFG scale w over 6. Thus, integrating CFG
into a distillation method becomes indispensable.

* Previous method Guided-Distill (Meng et al., 2023) introduces a
two-stage distillation to support few-step sampling from a guided
diffusion model. However, it is computationally intensive (e.g. at
least 45 A100 GPUs Days for 2-step inference, estimated in (Liu et
al., 2023)).

* An LCM demands merely 32 A100 GPUs Hours training for 2-step
inference, as depicted in Figure 1.

» Furthermore, the two-stage guided distillation might result in
accumulated error, leading to suboptimal performance.

+ LCMs adopt efficient one-stage guided distillation by solving an
augmented PF-ODE.

Latent Consistency Models

4.2 One-Stage Guided Distillation by Solving Augmented PF-ODE

» CFG used in reverse diffusion process

€ (zt,w, e, t) ;= (1+w)eg (z¢,e,t) — weg (2¢, 9, 1), (12)

- The original noise prediction is replaced by the linear
combination of conditional and unconditional noise

- w is called the guidance scale

» Augmented PF-ODE

» To sample from the guided reverse process, we need to solve the
following augmented PF-ODE: (i.e., augmented with the terms
related to w)

dze (1)

5 = )z + zr ~ N (0,6°T). (13)

gn (Z/.JJ.C. f) "

QO't

17



Latent Consistency Models

4.2 One-Stage Guided Distillation by Solving Augmented PF-ODE

» Augmented consistency function f,

+ To efficiently perform one-stage guided distillation, we introduce » We parameterize the f, in the same way as in Eq. 9, except that
an augmented consistency function €g(z:,c,t) is replaced by éq(z;, w, ¢, t), which is a noise prediction
model initializing with the same parameters as the teacher
fo : (zt,w,e,t) = 2o diffusion model, but also contains additional trainable parameters
for conditioning on w.
to directly predict the solution of augmented PF-ODE (Eq. 13) for t = 0.

* The consistency loss is the same as Eq. 10 except that we use
augmented consistency function fg(z;, w, c, t).

£ (6,675 0) = e [d (Fol2tnriore,tnr1)  For G175 esta))] (19)
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Latent Consistency Models

4.2 One-Stage Guided Distillation by Solving Augmented PF-ODE

» Consistency Loss

* The consistency loss is the same as Eq. 10 except that we use
augmented consistency function fg(z;, w, c, t).

Lep (93 6_ \IJ) = Ez,c.u:.n [d (fQ(ztn+1 y W, C, tn—l—l) ) fB_ (2:1:,%'3 W, C, tn))] (14)
* w and n are uniformly sampled from interval [wpin, ®max] @nd {1, . . . ,N=1} respectively.
. ZA:: “ is estimated using the new noise model é,(z;, w, c, t)
2

S e 15
20, = Zinys = / (f(t)zt + 92(5 )69 (zt,w, €, t)) dt

tnii t

2

= (1+w) /t:l (f(t)zt + 922(15) e (zhc,t)) dt — w/t:; (f(t)zt L

gt

~ (1 + W)‘;[/(Ztn_l_l,tn.;_l,tn, C) == wlp(ztn+1st71+1st7h @)

* We can use DDIM (Song et al., 2020a), DPM-Solver (Lu et al., 2022a) or DPM-Solver++ (Lu et
al., 2022b) as the PF-ODE solver ¥(-, -, -, *).

(1)

at

€p (Zt,g,t)) dt

(19)
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4.3 Accelerating Distillation with Skipping Time Steps

> Discretization Schedule (or Time Schedule) > Skipping-Step

* Discrete diffusion models (Ho et al., 2020; Song & Ermon, 2019) » To address this issues, we introduce the SKIPPING-STEP method
typically train noise prediction models with a long time-step to considerably shorten the length of time schedule (from
schedule {t;}; (also called discretization schedule or time schedule) thousands to dozens) to achieve fast convergence while
to achieve high quality generation results. preserving generation quality

v’ Stable Diffusion (SD) has a time schedule of length 1,000.
+ Consistency Models (CMs) (Song et al., 2023)

 Directly applying Latent Consistency Distillation (LCD) to SD v Use the EDM (Karras et al., 2022) continuous time schedule,
with such an extended schedule can be problematic. and the Euler, or Heun Solver as the numerical continuous PF-
v The model needs to sample across all 1,000 time steps. ODE solver.
v The consistency loss attempts to aligns the prediction of « For LCMs, in order to adapt to the discrete-time schedule in SD,
LCM model fq(z,,,, ¢, tn+1) With the prediction fo(z ,c,t,) at v" We utilize DDIM (Song et al., 2020a), DPM-Solver (Lu et al.,
the subsequent step along the same trajectory. 2022a), or DPM-Solver++ (Lu et al., 2022b) as the ODE solver.
v Since t, — ty,q is tiny, z, and z, . (and thus f4(z,, .., tys1) (Lu et al., 2022a) shows that these advanced solvers can solve

and fo(z,,,c,t,)) are already close to each other, incurring the PF-ODE efficiently in Eq. 8.

small consistency loss and hence leading to slow
convergence.



Latent Consistency Models

4.3 Accelerating Distillation with Skipping Time Steps

» Skipping-Step Method in Latent Consistency Distillation (LCD)

* Instead of ensuring consistency between adjacent time steps * k = 1 reduces to the original schedule in (Song et al., 2023),
t,+1 — t,, LCMs aim to ensure consistency between the current - leading to slow convergence, and very large k may incur large
time step and k-step away, t,,.; — t,. approximation errors of the ODE solvers.

* |n our main experiments, we set k = 20, drastically reducing the
+ SKIPPING-STEP method is crucial in accelerating the LCD process. length of time schedule from thousands to dozens.

+ Consistency distillation loss in Eq. 14 is modified to ensure consistency from ¢, to t,:
Lep (0,673%) = Ezcaum [d (fg(z,”_,,‘,w,c,r,,ﬁf, ), Fom (B, w, €, 1 ))] (16)

22"7’1’“’ being an estimate of z, using numerical augmented PF-ODE solver ¥

ﬁf;w — 2t + (1 +w)¥(2e, 0 tntk, tn, €) — w¥ (2, o, tntk, tn, D) (17)

n-—+
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Latent Consistency Models

4.3 Accelerating Distillation with Skipping Time Steps

» Skipping-Step Method in Latent Consistency Distillation (LCD)

+ Consistency distillation loss in Eq. 14 is modified to ensure consistency from ¢, to t,:

ECD (9! 9_; lI‘) = EZ,C.M,?'L |:d (fg(zf”___k ] w? cﬂ rﬁt—f.') v ) fe— ( /":f:L‘” UJ., c', f“ ))} (16)
z‘g:l“” being an estimate of z, using numerical augmented PF-ODE solver ¥
ﬁgﬂlw — ztn+k + (]. + W)‘l/(zi”_k , f',,lA],.. tn._. C) — W‘II(Z«,'“AAV, 'IL,,_‘L/,. t.n‘ @) (17)

* For LCM, we use three possible ODE solvers here: DDIM (Song et al., 2020a), DPM-Solver (Lu et
al., 2022a), DPM-Solver++ (Lu et al., 2022b), and we compare their performance in Sec 5.2.

+ In fact, DDIM (Song et al., 2020a) is the first-order discretization approximation of the DPM-Solver
(Proven in (Lu et al., 2022a)). Here we provide the detailed formula of the DDIM PF-ODE solver
Yopm from from ¢, ., to t,,.

ot Otpir " QAtn -
Tonml 26, 100 tnihy By @) = — =8, 0 — Oty (— —1) €0(2t, 5 Ctnir) =21, (18)

afn+k atn-Hc *Otp

A >4

~
DDIM Estimated =z,

22



Latent Consistency Models

4.3 Accelerating Distillation with Skipping Time Steps

» Pseudo-code for LCD with CFG and Skipping-Step techniques

» The modifications from the original Consistency Distillation (CD)
algorithm in Song et al. (2023) are highlighted in blue.

* LCM sampling algorithm 3 is provided in Appendix B.

Algorithm 1 Latent Consistency Distillation (LCD)

Input: dataset D, initial model parameter @, learning rate 7, ODE solver ¥ (-, -, -, -), distance metric d(-, -),
EMA rate p, noise schedule «(t), o(t), guidance scale [wyin, wmax ], skipping interval &, and encoder E(+)
Encoding training data into latent space: D. = {(z,¢)|z = E(x), (@,¢) € D}
6”0
repeat

Sample (z,¢) ~ D, n ~U[1, N — k] and w ~ [wmin, Wmax]

Sample z¢,, . ~ N(a(tntr)z; 02(t,,+k)l)

2;1;“) — zfn+k 2l (1 4= (—U)\Ij(ztn+k s tn-i—lf- tn.- C) - w\ll(zthrk. tn+k« t-n 5 @)

£(6,0 ;) « d(fo(2tn s W, € tntk), Fo- (2% w, €, tn))

0+ 0—nVel(0,07)

60~ « stopgrad(p@~ + (1 — pn)0)
until convergence
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Latent Consistency Models

4.4 Latent Consistency Fine-Tuning For Customized Dataset

== Appendix C « Randomly select two time steps t,, and t,,,, that are k time steps
apart and apply the same Gaussian noise € to obtain the noised data

« Stable Diffusion excel in diverse text-to-image generation tasks Zt: Ztnyy OS follows
e requirements of fownstroam ok, Ztss = O(tnik)Z +O(tnri)e . 24, = lta)% +0(ta)e.

 Directly calculate the consistency loss for these two time steps to

» Propose Latent Consistency Fine-tuning (LCF), a fine-tuning enforce self-consistency property in Eq.4.
method for pretrained LCM.

- Inspired by Consistency Training (CT) Algorithm 4 Latent Consistency Fine-tuning (LCF)
(Song et al., 2023), LCF enables efficient Input: customized dataset D*), pre-trained LCM parameter 0, learning rate 7, distance metric
few-step inference on customized d(-,-), EMA rate p, noise schedule «(t), o(t), guidance scale [wmin, wmax]. skipping interval k,
datasets without relying on a teacher and encoder F(-)
diffusion model trained on such data. Encode training data into the latent space: D' = {(z,¢)|z = E(z), (z,c) € D¥)}
6«80
Note that repeat
+ This method can also utilize the skipping- Sample (z, ¢) ~ P U[1, N — k] and w ~ [Win, Wiax]
step technique to speedup the convergence. Sample € ~ N((), I
« LCF is independent of the pre-trained Ztpop & Wtnyk)z +0(tnsn)e 21, < a(tn)z +o(tn)e
teacher model, facilitating direct fine-tuning £16, 8 Ji—d{fol=s, s bnprsiw)s Lo 20, s Ty ) )
of a pre-trained LCM model without reliance 0+ 60 —-nVeLl(6.07)
on the teacher diffusion model 0~ « stopgrad(pu8~ + (1 — 1)0)

until convergence




5. EXPERIMENT

Employ latency consistency distillation to train LCM on two
subsets of LAION-5B.

5.1 Text-to-lmage Generation

> Datasets

LAION-5B (Schuhmann et al., 2022): LAION-Aesthetics-6+ (12M)
and LAION-Aesthetics-6.5+ (650K) for text-to-image generation

Consider two resolutions
512x512 resolution : Use LAION-Aesthetics-6+, which comprises

12M text-image pairs with predicted aesthetics scores higher than 6.

768x768 resolution : Use LAION-Aesthetics-6.5+, with 650K text-
image pairs with aesthetics score higher than 6.5.

» Model Configuration

512x512 resolution : Use the pre-trained Stable Diffusion-V2.1-
Base (Rombach et al., 2022) as the teacher model, which was
originally trained on resolution 512 x 512 with e-Prediction (Ho et al.,

2020).

768x768 resolution : Use the widely used pre-trained Stable
Diffusion-V2.1, originally trained on resolution 768 x 768 with v-
Prediction (Salimans & Ho, 2022).

Train LCM with 100K iterations and a batch size of 72 for (512 x
512) setting, and 16 for (768 x 768) setting, the same learning rate
8e-6 and EMA rate u = 0.999943 as used in (Song et al., 2023).

For augmented PF-ODE solver W and skipping step k in Eq. 17,
- Use DDIM-Solver (Song et al., 2020a) with skipping step k = 20.

- Set the guidance scale range [wmin, Wmax] = [2,14], consistent
with (Meng et al., 2023)



Latent Consistency Models

5.1 Text-to-lmage Generation

> Baselines » Evaluation

» Baselines : DDIM (Song et al., 2020a), DPM (Lu et al., 2022a), * Generate 30K images from 10K text prompts in the test set (3
DPM++ (Lu et al., 2022b), Guided-Distill (Meng et al., 2023) images per prompt)

+ DDIM, DPM, DPM++ : Taining-free samplers requiring more peak » Adopt FID and CLIP scores to evaluate the diversity and quality of
memory per step with classifier-free guidance. the generated images.

* Guided-Distill : Requires two stages of guided distillation. Due to » Use ViT-g/14 for evaluating CLIP scores
the limited resource (Meng et al. (2023) used a large batch size of
512, requiring at least 32 A100 GPUs), reduce the batch size to 72
and trained for the same 100K iterations.

» LCM achieves faster convergence and superior results under the
same computation cost.
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Latent Consistency Models

5.1 Text-to-lmage Generation

» Results
FID | CLIP SCORE T - DDIM, DPM, DPM++ requi

:, : : quire more
DDIM (Song et al.[ 2020a) 18309 81.05 2238 1383 | 603 14.13 2580 299 CFG
DPM (Lu et al.|[2022a) 185.78 72.81 1853 1224 | 635 15.10 26.64 29.54 . .
DPM++ (Lu et al.; 2022b) 18578 72.81 1843 1220 | 635 1510 2664 29.55 "Sr'\i::’ful;;essct’g'y ‘;gar‘:"r"t‘)’g{g pass
Guided-Distill (Meng et al.}[2023)( 108.21 3325 15.12  13.89 | 1208 2271 27.25 28.17 P } pling step, 9
LCM (Ours) 3536 1331 1110 11.84 | 24.14 2783 28.69 28.84 and memory.

Table 1: Quantitative results with w = 8 at 512x512 resolution. LCM significantly surpasses baselines in
the 1-4 step region on LAION-Aesthetic-6+ dataset. For LCM., DDIM-Solver is used with a skipping step of « Guided-Distill : two-stage distillation

k = 20. procedure

* LCM : one-stage guided distillation,

FID | CLIP SCORE 1 i ;
MODEL (768 x 768) RESO 1 STEP 2 STEPS 4 STEPS 8 STEPS|] STEPS 2 STEPS 4 STEPS 8 STEPS \F’)vgg[;(;;_mmh simpler and more
DDIM (Song et al.; 2020a) 186.83 77.26 2428 15.66 6.93 16.32 2648 29.49
DPM Q[';uiet?llfﬁ()’?ﬂ*' 188.92 67.14 20.11 14.08 7.40 17.11 27.25 29.80
DPM++ (Lu et al..2022b) 188.91 67.14 20.08 14.11 7.41 17.11  27.26 29.84
Guided-Distill (Meng et al.,2023)[120.28 30.70 1670 14.12 | 12.88 2488 2845 29.16
LCM (Ours) 13422 1632 13.53 1497 | 25.32 2792 28.60 28.49

Table 2: Quantitative results with w = 8 at 768 x 768 resolution. LCM significantly surpasses the baselines in
the 1-4 step region on LAION-Aesthetic-6.5+ dataset. For LCM, DDIM-Solver is used with a skipping step of .
k= 20.



Latent Consistency Models

5.1 Text-to-lmage Generation

> Results

Guided Distill 2-Steps DPM-Solver++ 2-Steps LCM 4-Ste s (Ours) Guided Distill 4-Steps

LCM 2-Steps (Ours) DPM-Solver++ 4-Steps
€ . | e—

Figure 2: Text-to-Image generation results on LAION-Aesthetic-6.5+ with 2-, 4-step inference. Images generated by LCM exhibit
superior detail and quality, outperforming other baselines by a large margin.
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Figure 3: Ablation study on different ODE solvers and skipping step k. Appropriate skipping step k can significantly

Latent Consistency Models

5.2 Ablation Study

» ODE Solvers & Skipping-Step Schedule

» Compare various solvers W (DDIM, DPM, DPM++ for solving the
augmented PF-ODE specified in Eq 17, and explore different
skipping step schedules with different k.

LCM (DDIM-Solver) - FID (4-Steps)

LCM (DPM-Solver) - FID (4-Steps)

1) Using SKIPPING-STEP techniques (see Sec 4.3), LCM achieves
fast convergence within 2,000 iterations in the 4-step inference

setting.

2) DPM and DPM++ solvers perform better at a larger skipping step
(k = 50) compared to the DDIM solver which suffers from
increased ODE approximation error with larger k.

3) Very small k values (1 or 5) result in slow convergence and very
large ones (e.g., 50 for DDIM) may lead to inferior results

LCM (DPM-Sclver++) - FID (4-Steps)

154

40

—+— DDIM Skip50 —+— DPM Skip50 —+— DPM++ Skip50
—s— DDIM Skip20 | 357 —«— DPM Skip20 | 357 —+— DPM++ Skip20
—— DDIM Skip10 | _ —— DPM Skip10 | _ —— DPM++ Skip10
—+— DDIM Skip5 —+— DPM Skip5 —+— DPM++ Skip5
DDIM Sklpl 25 25 4
20 2041 "\
e~ i o I 151
———— e T ———
i i i i i 10 i i ; : 10 ] : i '
2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000

Trainina lteration

Trainina lteration

Trainina lteration

accelerate convergence and lead to better FID within the same number of training steps.

* We choose k = 20, which provides
competitive performance for all three
solvers.
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5.2 Ablation Study

» The Effect of Guidance Scale w

1) Using large w enhances sample quality (CLIP Scores) but results in

» Examine the effect of using different CFG scales w in LCM. relatively inferior FID.

* w balances sample quality and diversity 2) The performance gaps across 2, 4, and 8 inference steps are

v" A larger w generally tends to improve sample quality (indicated negligible, highlighting LCM’s efficacy in 2~8 step regions. However,
by CLIP), but may compromise diversity (measured by FID). a noticeable gap exists in one-step inference.

v An increased w yields better CLIP scores at the expense of FID.

LCM (DDIM-Solver, Skip20) - FID LCM (DDIM-Solver, Skip20) - CLIP Score

34
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Figure 4: Ablation study on different classifier-free guidance scales w. Larger w leads to better sample
quality (CLIP Scores). The performance gaps across 2, 4, and 8 steps are minimal, showing the
efficacy of LCM. 30



Latent Consistency Models

5.2 Ablation Study

» The Effect of Guidance Scale w

=2.0 w=4.0

Alarger w
enhances sample
quality, verifying the
effectiveness of our
one-stage guided
distillation method.

Figure 5: 4-step LCMs using different CFG scales w. LCMs utilize one-stage guided distillation to directly incorporate CFG scales
w. Larger w enhances image quality.

31



Latent Consistency Models

5.3 Downstream Consistency Fine-tuning Results

» 2 customized image datasets, Pokemon dataset (Pinkney, 2022) * For LCF, we utilize pretrained LCM that was originally trained at the
and Simpsons dataset (Norod78, 2022), that 90% is used for fine- resolution of 768 x 768 used in Table 2. We fine-tune the pre-trained
tuning and the rest 10% for testing. LCM for 30K iterations with a learning rate 8e-6.

Origin LCM 1K Finetuning 10K Finetuning Origin LCM 1K Finetuning 10K Finetuning 30K Finetuning

30K Finetuning

A

Figure 6: 4-step LCMs using Latent Consistency Fine-tuning (LCF) on two customized datasets: Pokemon Dataset (left), 32
Simpsons Dataset (right). Through LCF, LCM produces images with customized styles.





