

Yang Song, et al. ICML2023 OpenAl, Stanford Univ.

Suk-Hwan Lee

Artificial Intelligence

Creating the Future

Dong-A University

Division of Computer Engineering & Artificial Intelligence

References

Yang Song, Prafulla Dhariwal, Mark Chen, Ilya Sutskever, "Consistency Models," arXiv Preprint, arXiv:2303.01469, (ICML2023)

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek

Kumar, Stefano Ermon, Ben Poole, "Score-Based Generative

Modeling through Stochastic Differential Equations," ICLR 2021.

https://github.com/openai/consistency models

https://github.com/yang-song/score sde

[blog] https://junia3.github.io/blog/consistency https://thecho7.tistory.com/entry/

[blog] https://kimjy99.github.io/논문리뷰/sbgm/ https://blog.si-analytics.ai/49

EDM: Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurlPS 2022. https://github.com/NVlabs/edm

https://www.youtube.com/watch?v=T0Qxzf0eaio

❖ Diffusion Model: Fast Sampling 불가능한 이유

Noise으로부터 원본 방향으로 Denoising 하는 과정 (Foward Process) $q(\mathbf{x}_t|\mathbf{x}_{t-1})$ 에서, Noise β 가 매우 작다는 가정 하에 Normal Distribution을 사용할 수 있음. 따라서 기존 Diffusion 모델은 수백~수천번의 Iteration으로 학습함

https://thecho7.tistory.com/entry/

❖ VAE & GAN & Diffusion

Models	Key Concept	Pros	Cons
Variational Autoencoders (VAEs)	An encoder-decoder framework via probabilistic graphical models, where the lower bound is maximized on the log-likelihood of the data	Simultaneously perform both generation and inference with latent variables	VAE-generated image samples tend to be slightly blurry. KL vanishing issues in sequence modeling
Generative Adversarial Networks (GANs)	A generator-discriminator framework via an adversarial training game, where samples of the data are directly generated	Generate the sharpest image samples	More difficult to optimize due to unstable training dynamic
Autoregressive models (e.g. Neural Language Model, or NLM)	Factorize the joint distribution of data into the conditional distributions, modeling every individual dimension given previous dimensions	Simple and stable training, yielding the best log-likelihood	NLMs are inefficient during sampling and don't easily provide low-dimensional features

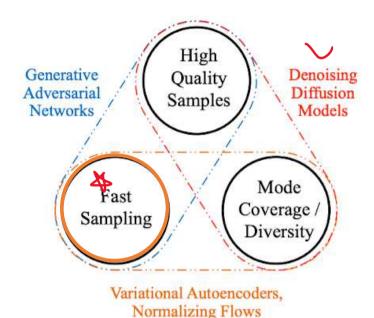


Figure 1. Generative learning trilemma

https://developer.nvidia.com/blog/improving-diffusion-models-as-an-alternative-to-gans-part-1/

- <u>Generative models (openai.com)</u>: <u>https://openai.com/research/generative-models</u>
- A deep generative model trifecta: Three advances that work towards harnessing large-scale power - Microsoft Research https://www.microsoft.com/en-us/research/blog/a-deepgenerative-model-trifecta-three-advances-that-work-towardsharnessing-large-scale-power/

Abstract

- **Diffusion models** depend on an **iterative sampling process** that causes slow generation.
- Propose consistency models, a new family of models that generate high quality samples by directly mapping noise to data.
 - ✓ Support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality.
 - ✓ **Support** zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training on these tasks.
 - Can be trained either by distilling pre-trained diffusion models, or as standalone generative models altogether.
- Outperform existing distillation techniques for diffusion models in one- and few-step sampling, achieving SOTA FID of 3.55 on CIFAR-10 and 6.20 on ImageNet 64x64 for one-step generation.
- When trained in *isolation*, **consistency models become a new family of generative models that can outperform existing one- step**, **non-adversarial generative models** on standard benchmarks such as CIFAR-10, ImageNet 64x64 and LSUN 256x256.

Objective

- Create generative models that facilitate efficient, single-step generation without sacrificing important advantages of iterative refinement.
- Ability to trade-off compute for sample quality when necessary, as well as the capability to perform zeroshot data editing tasks.

1. Introduction

Fast Sampling?

- 기존의 Diffusion이 장인 정신으로 한땀한땀(시간축 t에 따라서) Noise를 제거해가는 방식 대신에, 하이패스를 달아서 한번에 Noise로부터 샘플을 생성하는 것이다. 즉 기존의 GAN이 가능했던 빠른 샘플링인 G(z)를 Dffiusion에 대해서도 가능하게 하고 싶다는 것이다. 이러한 생각에서 나온 방법들 중일부는 다음과 같다.
- **DDIM**: Markovian process와 동일한 marginal likelihood를 가지는 Non-Markovian forward process를 정의하고, 이를 통해 샘플링 시퀀스의 time step을 간소화
- **Diffusion model distillation**: 샘플링 성능이 좋은 Diffusion 모델 ex) DDPM 을 사용하여 단일 step으로 좋은 샘플링이 가능하게끔 *probability flow ODE*를 학습
- ✓ Jiaming Song, Chenlin Meng, Stefano Ermon, "Denoising Diffusion Implicit Models," ICLR2021.

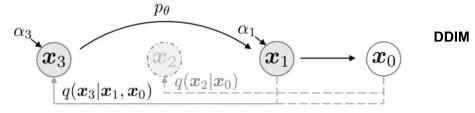
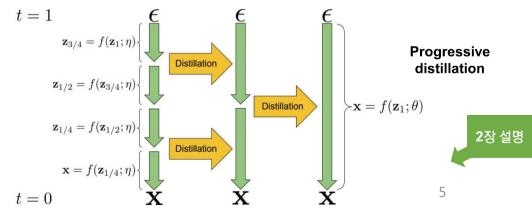


Figure 2: Graphical model for accelerated generation, where $\tau = [1, 3]$.

√ https://junia3.github.io/blog/consistency

- 여전히 DDIM을 포함하여 probability flow ODE의 경우에도 <u>샘플링의 속도</u> 를 빠르게 하면 할수록 발생하는 샘플 퀄리티의 하락을 무시할 수 없다.
- <u>샘플링 단계를 최소화</u>하면서 <u>샘플링 성능의 저하를 막는 것</u>이 주요 포인트인데, 이게 기존 방식으로 해결하기에는 벅차다. 그나마 <u>distillation 방법이</u> probability flow ODE에 대해 좋은 Diffusion 모델의 성능을 transfer하기 <u>좋은 방법이긴 하지만</u>, 결국 <u>Diffusion 모델의 생성에 의존</u>해야한다는 점 때문 에 <u>학습 속도가 현저히 느려</u>지게 된다는 bottleneck에서 벗어날 수 없다.
- ✓ Salimans, T. and Ho, J. **Progressive distillation for fast sampling of diffusion models**. ICLR 2022.



1. Introduction

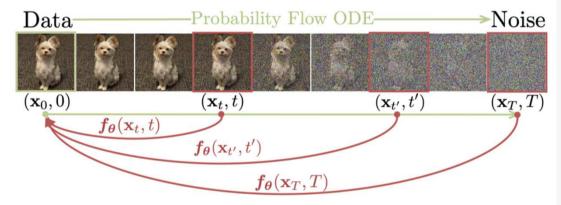


Figure 1: Given a **Probability Flow (PF) ODE** that **smoothly converts data to noise**, we learn to map any point (e.g., \mathbf{x}_t , $\mathbf{x}_{t'}$, and \mathbf{x}_T) on the *ODE* trajectory to its origin (e.g., \mathbf{x}_0) for generative modeling. Models of these mappings are called **consistency models**, as **their outputs are trained to be consistent for points on the same trajectory**.

- Build on top of the probability flow (PF) ordinary differential equation (ODE) in continuous-time diffusion models (Song et al., 2021), whose trajectories smoothly transition the data distribution into a tractable noise distribution.
- Propose to learn a model that maps any point at any time step to the trajectory's starting point.
- A notable property of our model is self-consistency: points on the same trajectory map to the same initial point. Refer to such models as consistency models.
- Consistency models allow us to generate data samples (initial points of ODE trajectories, e.g., x₀ in Fig. 1) by converting random noise vectors (endpoints of ODE trajectories, e.g., x_T in Fig. 1) with only one network evaluation.
- Importantly, by chaining the outputs of consistency models at multiple time steps, we can improve sample quality and perform zero-shot data editing at the cost of more compute, similar to what iterative refinement enables for diffusion models.

1. Introduction

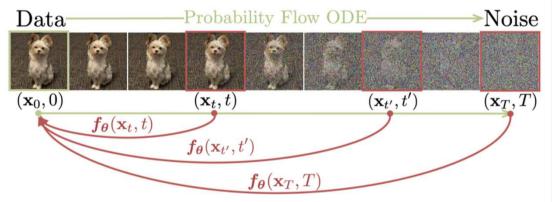


Figure 1: Given a Probability Flow (PF) ODE that smoothly converts data to noise, we learn to map any point (e.g., \mathbf{x}_t , $\mathbf{x}_{t\prime}$, and \mathbf{x}_T) on the *ODE trajectory* to its origin (e.g., \mathbf{x}_0) for generative modeling. Models of these mappings are called consistency models, as their outputs are trained to be consistent for points on the same trajectory.

- ➤ To train a consistency model, we offer two methods based on enforcing the self-consistency property.
- 1) First method: Relies on using numerical ODE solvers and a pretrained diffusion model to generate pairs of adjacent points on a PF ODE trajectory.
 - By minimizing the difference between model outputs for these pairs, we can effectively distill a diffusion model into a consistency model, which allows generating high-quality samples with one network evaluation.
- 2) Second method: Eliminates the need for a pre-trained diffusion model altogether, allowing us to train a consistency model in isolation.
 - Situates consistency models as an independent family of generative models.
- Crucially, neither approach requires adversarial training, and both training methods permit flexible neural network architectures for consistency models.

2. Diffusion Models

- Consistency models are heavily inspired by the theory of (continuous-time) diffusion models.
- ✓ 모든 diffusion process는 marginal likelihood $p(x_{0;T})$ 를 동일하게 가지는 ODE를 찾을 수 있다.
- ✓ 원래의 Diffusion SDE는 식(1)
- Diffusion models start by diffusing $p_{\rm data}({\bf x})$ with a **stochastic** differential equation (SDE)

$$d\mathbf{x}_t = \boldsymbol{\mu}(\mathbf{x}_t, t) dt + g(t) d\mathbf{w}_t, \quad t \in [0, T]$$
 (1)

- ✓ $p_{data}(\mathbf{x})$: Data distribution
- \checkmark $\mu(\cdot,\cdot)$ and $g(\cdot)$: **Drift** and **diffusion** coefficients
- $\checkmark \{\mathbf{w}_t\}_{t \in [0,T]}$: Standard Brownian motion
- $p_t(\mathbf{x})$: Distribution of \mathbf{x}_t and as a result $p_0(\mathbf{x}) \equiv p_{\text{data}}(\mathbf{x})$.

- ✓ Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. "Score-based generative modeling through stochastic differential equations," ICLR, 2021.
- ✓ Song, Y., Shen, L., Xing, L., and Ermon, S. "Solving inverse problems in medical imaging with score-based generative models," ICLR, 2022.
- ✓ Karras, T., Aittala, M., Aila, T., and Laine, S. "Elucidating the design space of diffusion-based generative models," Proc. NeurIPS, 2022
- ✓ SDE (1)와 동일한 marginal likelihood를 가지는 ODE는 식(2)와 같다.
- Remarkable property of SDE; Ordinary differential equation (ODE), dubbed *the Probability Flow (PF) ODE* by Song et al. (2021), whose solution trajectories sampled at t are distributed according to $p_t(\mathbf{x})$:

$$d\mathbf{x}_{t} = \left[\boldsymbol{\mu}(\mathbf{x}_{t}, t) \left(-\frac{1}{2} g(t)^{2} \nabla \log p_{t}(\mathbf{x}_{t}) \right) \right] dt.$$
 (2)

- $\checkmark \ \ \nabla \log p_t(\mathbf{x})$: Score functions of $p_t(\mathbf{x})$
- ✓ Diffusion models are known as score-based generative models.

Standard Brownian Motion

DEF 19.1 (Brownian motion: Definition I) The continuous-time stochastic process $X = \{X(t)\}_{t\geq 0}$ is a standard Brownian motion if X is a Gaussian process with almost surely continuous paths, that is,

$$\mathbb{P}[X(t) \text{ is continuous in } t] = 1,$$

such that X(0) = 0,

$$\mathbb{E}[X(t)] = 0,$$

and

$$Cov[X(s), X(t)] = s \wedge t.$$

More generally, $B = \sigma X + x$ is a Brownian motion started at x.

✓ https://people.math.wisc.edu/~roch/teaching_files/275b.1.12w/lect18-web.pdf

Marginal likelihood
 ✓ https://en.wikipedia.org/wiki/Marginal_likelihood

Given a set of independent identically distributed data points $\mathbf{X}=(x_1,\ldots,x_n)$, where $x_i\sim p(x|\theta)$ according to some probability distribution parameterized by θ , where θ itself is a random variable described by a distribution, i.e. $\theta\sim p(\theta\mid\alpha)$, the marginal likelihood in general asks what the probability $p(\mathbf{X}\mid\alpha)$ is, where θ has been marginalized out (integrated out):

$$igwedge p(\mathbf{X} \mid lpha) = \int_{ heta} p(\mathbf{X} \mid heta) \, p(heta \mid lpha) \, \, \mathrm{d} heta$$

The above definition is phrased in the context of Bayesian statistics in which case $p(\theta \mid \alpha)$ is called prior density and $p(\mathbf{X} \mid \theta)$ is the likelihood. The marginal likelihood quantifies the agreement between data and prior in a geometric sense made precise [how?] in de Carvalho et al. (2019). In classical (frequentist) statistics, the concept of marginal likelihood occurs instead in the context of a joint parameter $\theta = (\psi, \lambda)$, where ψ is the actual parameter of interest, and λ is a non-interesting nuisance parameter. If there exists a probability distribution for $\lambda^{[dubious-discuss]}$, it is often desirable to consider the likelihood function only in terms of ψ , by marginalizing out λ

$$\mathcal{L}(\psi; \mathbf{X}) = p(\mathbf{X} \mid \psi) = \int_{\lambda} p(\mathbf{X} \mid \lambda, \psi) \, p(\lambda \mid \psi) \, d\lambda$$

Unfortunately, marginal likelihoods are generally difficult to compute. Exact solutions are known for a small class of distributions, particularly when the marginalized-out parameter is the conjugate prior of the distribution of the data. In other cases, some kind of numerical integration method is needed, either a general method such as Gaussian integration or a Monte Carlo method, or a method specialized to statistical problems such as the Laplace approximation, Gibbs/Metropolis sampling, or the EM algorithm.

2. Diffusion Models

• Diffusion models start by diffusing $p_{\rm data}(x)$ with a **stochastic** differential equation (SDE)

$$d\mathbf{x}_t = \boldsymbol{\mu}(\mathbf{x}_t, t) dt + g(t) d\mathbf{w}_t \quad t \in [0, T]$$
 (1)

- Typically, the **SDE** in Eq. (1) is designed such that $p_T(\mathbf{x})$ is close to a tractable Gaussian distribution $\pi(\mathbf{x})$.
- We hereafter adopt the configurations in Karras et al. (2022), who set $\mu(\mathbf{x},t) = 0$ and $g(t) = \sqrt{2t}$.
- In this case, we have $p_t(\mathbf{x}) = p_{\text{data}}(\mathbf{x}) \otimes \mathcal{N}(\mathbf{0}, t^2 \mathbf{I})$, where \otimes denotes the convolution operation, and $\pi(\mathbf{x}) = \mathcal{N}(\mathbf{0}, T^2 \mathbf{I})$.
- For sampling, we first train a score model $s_{\phi}(\mathbf{x},t) \approx \nabla \log p_t(\mathbf{x}_t)$ via score matching, then plug it into Eq. (2) to obtain an empirical estimate of the PF ODE.

• **Probability Flow (PF) ODE** by Song et al. (2021), whose solution trajectories sampled at t are distributed according to $p_t(\mathbf{x})$:

$$d\mathbf{x}_t = \left[\boldsymbol{\mu}(\mathbf{x}_t, t) - \frac{1}{2} g(t)^2 \nabla \log p_t(\mathbf{x}_t) \right] dt.$$
 (2)

 $\mu(\mathbf{x},t) = 0, \ g(t) = \sqrt{2t}$ in Karras et al. $s_{\phi}(\mathbf{x},t) \approx \nabla \log p_t(\mathbf{x}_t)$

• Empirical PF ODE

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = -ts_{\phi}(\mathbf{x}_t, t). \tag{3}$$

- Next, we sample $\hat{\mathbf{x}}_T \sim \pi = \mathcal{N}(\mathbf{0}, T^2 \mathbf{I})$ to initialize the *empirical PF ODE* and solve it backwards in time with any *numerical ODE solver* to obtain the **solution trajectory** $\{\hat{\mathbf{x}}_t\}_{t \in [0,T]}$.
- The resulting $\hat{\mathbf{x}}_0$ can be viewed as an approximate sample from the data distribution $p_{\text{data}}(\mathbf{x})$.
- To avoid numerical instability, one typically stops the solver at $t = \epsilon$, where ϵ is a fixed small positive number, and instead accepts $\hat{\mathbf{x}}_{\epsilon}$ as the approximate sample.

2. Diffusion Models

Stochastic differential equation (SDE)

$$d\mathbf{x}_t = \boldsymbol{\mu}(\mathbf{x}_t, t) dt + g(t) d\mathbf{w}_t \qquad t \in [0, T]$$
 (1)

Probability Flow (PF) ODE

$$d\mathbf{x}_{t} = \left[\boldsymbol{\mu}(\mathbf{x}_{t}, t) - \frac{1}{2} g(t)^{2} \nabla \log p_{t}(\mathbf{x}_{t}) \right] dt.$$
 (2)

Empirical PF ODE

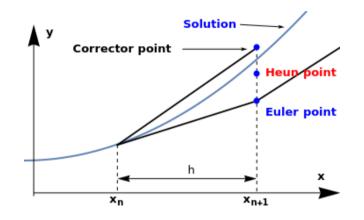
$$\mu(\mathbf{x},t) = 0, \ g(t) = \sqrt{2t} \text{ in Karras et al.}$$

$$s_{\phi}(\mathbf{x},t) \approx \nabla \log p_t(\mathbf{x}_t)$$

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = -ts_{\phi}(\mathbf{x}_t, t). \tag{3}$$

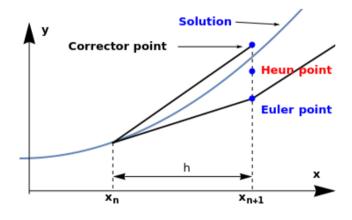
• ODE로 변형했을 때 SDE에 대해 가지는 장점은 stochastic한 diffusion coefficient $(d\mathbf{w}_t)$ 를 가지지 않아서, Probability flow ODE를 기준으로 starting point (\mathbf{x}_0) 를 잡는다면 미분 방정식의 solution이 그리는 trajectory 를 따라가는 \mathbf{x}_T 까지의 모든 점 \mathbf{x}_t 에 대해 하나의 선으로 이을 수 있게 된다 (그림 참고).

√ https://junia3.github.io/blog/consistency



- SDE는 drift $\operatorname{term}(\mu(\cdot,\cdot))$ 이 방향만 정해줄 뿐, 실질적으로 뻗어나가는 구조는 랜덤한 요소가 좌우하므로 starting point와 ending point만 알 뿐, 그 내부에서 각각의 \mathbf{x}_t 가 서로 교차하고 얽히는 과정을 알 수 없으므로, 1대1 mapping이 불가능하다는 단점이 있다.
- ODE의 경우에는 trajectory를 그리는 요소에 시간축이라는 단일 변수가 관여할 수 있게 된다
- 만약 특정 시점의 데이터인 \mathbf{x}_t 에 대해 score를 예측할 수 있는 모델인 $\mathbf{s}_{\phi}(\mathbf{x},t) \approx \nabla \log p_t(\mathbf{x})$ 가 있다면, 위의 방정식은 perturbation kernel $p_t(\mathbf{x}) = p_{\text{data}}(\mathbf{x}) \otimes \mathcal{N}(\mathbf{0}, t^2 \mathbf{I})$ 에 대해 식(3)과 같은 form으로 나타낼 수 있다.

2. Diffusion Models



- 만약 $\mathbf{x}_T \sim \pi = \mathcal{N}(\mathbf{0}, T^2 \mathbf{I})$ 를 정의하고 이에 따른 probability flow ODE (식 (3))를 풀어낸다면, \mathbf{x}_0 과 \mathbf{x}_T 를 잇는 하나의 trajectory를 구할 수 있게 된다.
- 미분 방정식을 푸는 방식은 Euler나 Heun solver와 같은 numerical 방법을 통해 함수의 형상을 예측하는 형태가 된다

$$\frac{d\mathbf{x}_t}{dt} = -t\mathbf{s}_{\phi}(\mathbf{x}, t) \text{ where } \mathbf{s}_{\phi}(\mathbf{x}, t) \approx \nabla \log p_t(\mathbf{x}_t)$$

- 실제로 Analytic하게 풀어낼 수 없는(정해진 solution이 없는) 미분 방정식을 마주했을때, 아주 작은 변수의 변화에 대한 함숫값 변화를 예측하는 과정을 의미한다.
- 그러나 그림을 보면 알 수 있듯이 실제로 numerical하게 풀어낸 미분 방정식의 해는 실제 solution과 오차가 클 수 밖에 없으며, 이는 시간 축이 길어지면 길어 질수록, 샘플링 간격이 늘어나면 늘어날수록 variance가 높아진다.

$$\hat{\mathbf{x}}_T, t \in (0, T)$$

• 논문에서는 numerical instability를 보완할 목적으로 $t \in \epsilon(0.002)$ 의 위치에서의 solution을 실제 데이터 샘플인 \mathbf{x}_0 에 근사한 값으로 간주했으며, time step의 총 수는 T=80 을 사용함

2. Diffusion Models

- Diffusion models are bottlenecked by their slow sampling speed.
- Clearly, using ODE solvers for sampling requires many evaluations of the score model $s_{\phi}(\mathbf{x}, t)$.
- Existing methods for fast sampling include faster numerical ODE solvers and distillation techniques.
 - ✓ ODE solvers: Still need more than 10 evaluation steps to generate competitive samples - 꽤 좋은 퀄리 티의 데이터를 생성하기 위해서는 단일 step으로는 불가능
 - ✓ Distillation methods: Rely on collecting a large dataset of samples from the diffusion model prior to distillation. - 보통 DDPM과 같은 Diffusion의 prior에 의 존하게 되는데, 결국 DDPM에서 각 time step에 대한 Noise 데이터를 샘플링 해야하기 때문에 연산량이 부담
- To our best knowledge, the only distillation approach that does not suffer from this drawback is *progressive* distillation (PD, Salimans & Ho (2022))

- ✓ Salimans, T. and Ho, J. **Progressive distillation for fast sampling of diffusion models**. In International Conference on Learning Representations, 2022.
- ➤ **Progressive distillation** : 점진적으로 distillation을 수행하는 time step 수를 줄임

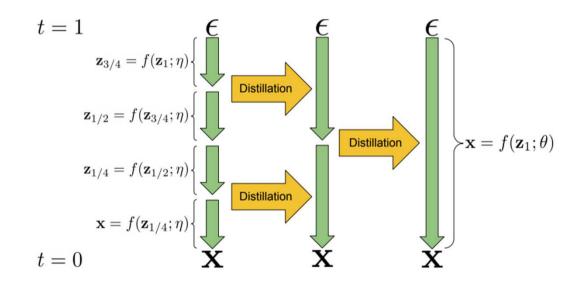


Figure 1: A visualization of two iterations of our proposed *progressive distillation* algorithm. A sampler $f(\mathbf{z}; \eta)$, mapping random noise ϵ to samples \mathbf{x} in 4 deterministic steps, is distilled into a new sampler $f(\mathbf{z}; \theta)$ taking only a single step. The original sampler is derived by approximately integrating the *probability flow ODE* for a learned diffusion model, and distillation can thus be understood as learning to integrate in fewer steps, or *amortizing* this integration into the new sampler.

2. Diffusion Models

✓ Salimans, T. and Ho, J. Progressive distillation for fast sampling of diffusion models. In International Conference on Learning Representations, 2022.

> Progressive distillation

- 처음부터 단일 trajectory을 모두 학습하려면 score 예측에 필요한 샘플이 그만큼 늘어나게 된다.
- 하지만 만약 여러 trajectory에 대해 부분적으로 학 습된 ODE score estimator가 서로 연결되게끔 distillation 하면서 그 수를 줄여나가면, 굳이 처음 부터 엄청난 수의 샘플을 사용하지 않고도 충분히 좋 은 성능을 보일 수 있다는 것이 그 방법이다.

• 본 논문에서는 위와 같이 progressive distillation을 사용하지는 않지만 consistency distillation을 사용하여 ODE solver에 대한 예측 과 prior에 대한 예측을 일치시키는 작업을 진행하게 된다.

Algorithm 1 Standard diffusion training

Require: Model $\hat{\mathbf{x}}_{\theta}(\mathbf{z}_t)$ to be trained

Require: Data set D

Require: Loss weight function w()

while not converged do

$$\mathbf{x} \sim \mathcal{D}$$
 \triangleright Sample data $t \sim U[0,1]$ \triangleright Sample time $\epsilon \sim N(0,I)$ \triangleright Sample noise $\mathbf{z}_t = \alpha_t \mathbf{x} + \sigma_t \epsilon$ \triangleright Add noise to data

 \triangleright Clean data is target for $\hat{\mathbf{x}}$ $\tilde{\mathbf{x}} = \mathbf{x}$ $\lambda_t = \log[\alpha_t^2/\sigma_t^2]$ ⊳ log-SNR $L_{\theta} = w(\lambda_t) \|\tilde{\mathbf{x}} - \hat{\mathbf{x}}_{\theta}(\mathbf{z}_t)\|_2^2 \quad \triangleright \text{Loss}$ $\theta \leftarrow \theta - \gamma \nabla_{\theta} L_{\theta}$ ▶ Optimization end while

Algorithm 2 Progressive distillation

Require: Trained teacher model $\hat{\mathbf{x}}_n(\mathbf{z}_t)$

Require: Data set D

Require: Loss weight function w()Require: Student sampling steps N

for K iterations do

▶ Init student from teacher $\theta \leftarrow n$ while not converged do

$$\mathbf{x} \sim \mathcal{D}$$

 $\mathbf{t} = i/N, \ i \sim Cat[1, 2, \dots, N]$
 $\epsilon \sim N(0, I)$

$$\mathbf{z}_t = \alpha_t \mathbf{x} + \sigma_t \epsilon$$
2 steps of DDIM with teacher

$$t' = t - 0.5/N, \quad t'' = t - 1/N$$

$$\mathbf{z}_{t'} = \alpha_{t'} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_t) + \frac{\sigma_{t'}}{\sigma_t} (\mathbf{z}_t - \alpha_t \hat{\mathbf{x}}_{\eta}(\mathbf{z}_t))$$

$$\mathbf{z}_{t'} = \alpha_{t'} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_{t}) + \frac{\sigma_{t'}}{\sigma_{t}} (\mathbf{z}_{t} - \alpha_{t} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_{t}))$$

$$\mathbf{z}_{t''} = \alpha_{t''} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_{t'}) + \frac{\sigma_{t''}}{\sigma_{t'}} (\mathbf{z}_{t'} - \alpha_{t'} \hat{\mathbf{x}}_{\eta}(\mathbf{z}_{t'}))$$

$$\tilde{\mathbf{x}} = \frac{\mathbf{z}_{t''} - (\sigma_{t''}/\sigma_{t})\mathbf{z}_{t}}{\alpha_{t''} - (\sigma_{t''}/\sigma_{t})\alpha_{t}} \quad \triangleright \text{ Teacher } \hat{\mathbf{x}} \text{ target}$$

$$\lambda_t = \log[\alpha_t^2/\sigma_t^2]$$

$$L_{\theta} = w(\lambda_t) \|\tilde{\mathbf{x}} - \hat{\mathbf{x}}_{\theta}(\mathbf{z}_t)\|_2^2$$

$$\theta \leftarrow \theta - \gamma \nabla_{\theta} L_{\theta}$$

end while

> Student becomes next teacher $\eta \leftarrow \theta$ $N \leftarrow N/2$ > Halve number of sampling steps

end for

3. Consistency Models

- Consistency model, A new type generative models
 - ✓ Support single-step generation at the core design
 - ✓ While still allowing iterative generation for zero-shot data editing and trade-offs between sample quality and compute.
- > Trained in either the distillation mode or the isolation mode.
 - ✓ **Disitllation mode**: Distill the knowledge of pre-trained diffusion models into a single-step sampler, significantly improving other distillation approaches in sample quality while allowing zero-shot image editing applications.
 - Isolation mode: With no dependence on pre-trained diffusion models. Makes them an independent new class of generative models.

Consistency model은 diffusion process의 SDE를 기반으로 하는 probability flow ODE를 수학적 접근 프레임으로 삼는데, 이때 ODE를 풀어가는 방식에 만약 굳이 사전 학습된 DDPM에 의한 distillation이 불필요하게 된다면 이는 곧 scratch 부터 학습될 수 있는 새로운 생성 모델의 기본이 되는 것이다.

3. Consistency Models

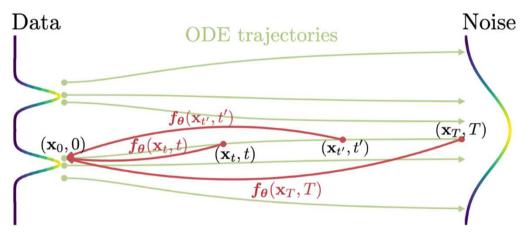


Figure 2: Consistency models are trained to map points on any trajectory of the PF ODE to the trajectory's origin.

ODE Trajectories(초록색)이 시간축 상에서 ϵ 부터 T까지 뻗어있는 PF ODE의 솔루션 궤도이며, 모든 시간축 상의 점들을 태초마을로 귀환시켜버리는 것이 논문에서 학습시키고자 하는 consistency model의 주된 목적이다.

즉, consistency model은 ODE를 통해 궤도를 예측하면서 남은 발자국의 출발점을 똑같은 곳인 \mathbf{x}_ϵ 으로 보내는 과정이 된다

3.1) Definition

• Given a solution trajectory $\{x_t\}_{t\in[\epsilon,T]}$ of the PF ODE in Eq. (2),

$$d\mathbf{x}_t = \left[\boldsymbol{\mu}(\mathbf{x}_t, t) - \frac{1}{2} \sigma(t)^2 \nabla \log p_t(\mathbf{x}_t) \right] dt.$$

• Define the consistency function as

$$f: \{\mathbf{x}_t, t\} \mapsto \mathbf{x}_{\epsilon}.$$

✓ Property; Self-consistency

its outputs are consistent for arbitrary pairs of $\{\mathbf{x}_t, t\}$ that belong to the same PF ODE trajectory, i.e., $f(\mathbf{x}_t, t) = f(\mathbf{x}_t, t')$ for all $t, t' \in [\epsilon, T]$

- \checkmark With fixed time argument, $f(\cdot,t)$ is always an invertible function.
- As illustrated in Fig. 2, the goal of a consistency model, symbolized as f_{θ} , is to estimate this consistency function f from data by learning to enforce the *self-consistency* property.

3. Consistency Models

Architecture of F_{θ} DDPM++
Skip scaling $c_{\text{skip}}(\sigma)$ 1
Output scaling $c_{\text{out}}(\sigma)$ $-\sigma$

 $\begin{array}{ccc} \text{NCSN++} & \text{DDPM} \\ 1 & 1 \\ \sigma & -\sigma \end{array}$

(any) $\sigma_{\rm data}^2 / \left(\sigma^2 + \sigma_{\rm data}^2\right) \\ \sigma \cdot \sigma_{\rm data} / \sqrt{\sigma_{\rm data}^2 + \sigma^2}$

3.2) Parameterization

• Boundary condition : For consistency function $f(\cdot,\cdot)$; $f(\cdot,\epsilon)$ is an identity function.

$$f(\mathbf{x}_{\epsilon}, \epsilon) = \mathbf{x}_{\epsilon}$$

- Discuss two ways to implement the boundary condition for consistency models
 - \checkmark $F_{\theta}(\mathbf{x},t)$: a free-form deep neural network, Output has the same dimensionality as \mathbf{x} .
 - ✓ First way: Simply parameterize the consistency model as

$$f_{\theta}(\mathbf{x}, t) = \begin{cases} \mathbf{x} & t = \epsilon \\ \frac{F_{\theta}(\mathbf{x}, t)}{t} & t \in (\epsilon, T] \end{cases}$$
 (4)

✓ Second way : Parameterize the consistency model using skip connections

$$f_{\theta}(\mathbf{x}, t) = c_{\text{skip}}(t)\mathbf{x} + c_{\text{out}}(t)F_{\theta}(\mathbf{x}, t),$$
 (5)

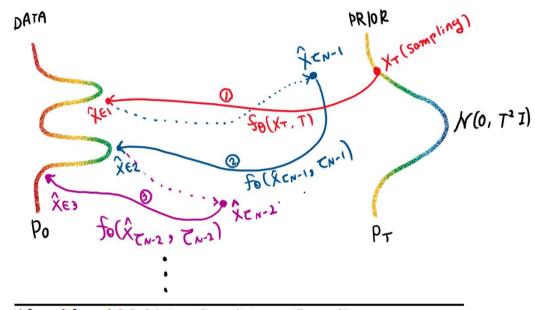
 $c_{
m skip}(t)$ and $c_{
m out}(t)$ are differentiable functions such that $c_{
m skip}(\epsilon)=1$, and $c_{
m out}(\epsilon)=0$

- The consistency model is differentiable at $t = \epsilon$ if $F_{\theta}(\mathbf{x}, t)$ and scaling coefficients are differentiable, which is critical for training continuous-time consistency models
 - Bears strong resemblance to many successful diffusion models, making it easier to borrow powerful diffusion model architecture for constructing consistency models

3. Consistency Models

3.3) Sampling

- Single Step Sampling
 - With a well-trained consistency model $f_{\theta}(\cdot,\cdot)$, we can generate samples by
 - ✓ Sampling from the initial distribution $\hat{x}_T \sim N(0, T^2I)$
 - ✓ Evaluating the consistency model for $\hat{\mathbf{x}}_{\epsilon} \sim f_{\theta}(\hat{\mathbf{x}}_{T}, T)$
- One can also evaluate the consistency model multiple times by alternating denoising and noise injection steps for improved sample quality.
- Multistep Sampling
 - · Provide the flexibility to trade computing for sample quality
 - Zero-shot data editing
 - 태초 마을로 데려갔다가 다시 Noise를 더했다가 하는 과정을 반복
- We find time points in Algorithm 1 with a greedy algorithm, where the time points are pinpointed one at a time using ternary search to optimize the FID of samples obtained from Algorithm 1



Algorithm 1 Multistep Consistency Sampling

Input: Consistency model $f_{\theta}(\cdot, \cdot)$, sequence of time points $\tau_1 > \tau_2 > \cdots > \tau_{N-1}$, initial noise $\hat{\mathbf{x}}_T$ $\mathbf{x} \leftarrow f_{\theta}(\hat{\mathbf{x}}_T, T)$

for
$$n = 1$$
 to $N - 1$ do
Sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

$$\hat{\mathbf{x}}_{\tau_n} \leftarrow \mathbf{x} + \sqrt{\tau_n^2 - \epsilon^2} \mathbf{z}$$

$$\mathbf{x} \leftarrow f_{\theta}(\hat{\mathbf{x}}_{\tau_n}, \tau_n)$$

end for

$$f_{\theta}(\mathbf{x}, t) = c_{\text{skip}}(t)\mathbf{x} + c_{\text{out}}(t)F_{\theta}(\mathbf{x}, t),$$

18

3. Consistency Models

√ https://junia3.github.io/blog/consistency

3.4) Zero-Shot Data Editing

- Enable various data editing and manipulation applications in zero shot; Do not require explicit training.
- Define a **one-to-one mapping** from a **Gaussian noise vector** to a **data sample**. Similar to latent variable models like GANs, VAEs, and normalizing flows, consistency models can easily **interpolate between samples by traversing the latent space** (Fig. 11)

Fig. 11. Interpolating between leftmost and rightmost images with spherical linear interpolation. All samples are generated by a consistency model trained on LSUN Bedroom 256x256.

3. Consistency Models

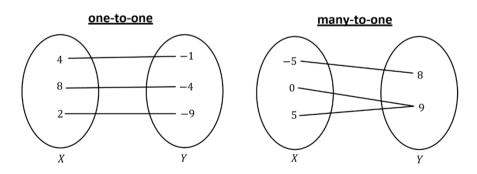
3.4) Zero-Shot Data Editing

- Consistency model의 특징(prior를 기준으로 data와 대응되는 궤도 상의 어떤 점에서 출발하더라도 원래의 \mathbf{x}_0 로 수렴하는 성질)을 사용하게 된다면 image editing이나 manipulation을 zero shot으로 수행할 수 있다.
- 가장 간단하게 생각해볼 수 있는 것은 GAN, VAE와 같은 latent variable model에서 할 수 있는 interpolation이다.

• Latent와 생성되는 sample이 parameter로 구성된 implicit decoder의 출력이 되는 GAN나 VAE의 경우에는 샘플 \mathbf{x}_0 를 만들어내는 latent \mathbf{z}_0 , 그리고 샘플 \mathbf{x}_1 을 만들어내는 latent \mathbf{z}_1 사이의 보간을 통해 중간 이미지 (Image $(\mathbf{x}_0, \mathbf{x}_1)$)를 생성할 수 있고, 이는 곧 특징자 벡터를 자유롭게 사용하여 생성되는 이미지를 바꿀 수 있다는 장점이 된다.

$$F_{\theta}(\alpha \mathbf{z}_0 + (1 - \alpha)\mathbf{z}_1) = \text{Image}(\mathbf{x}_0, \mathbf{x}_1)$$

- √ https://junia3.github.io/blog/consistency
- 확률 미분 방정식에서의 diffusion process를 그대로 사용하는 **DDPM baseline**의 경우에 prior sample인 \mathbf{x}_T 와 이에 대해 생성한 샘플 $F_{\theta_{1:T}}(\mathbf{x}_T) = \mathbf{x}_0$ 이 1대1 대응이 아니라는 점을 생각해보자. <u>하나의 latent sample \mathbf{x}_T 가 포함된 Modality에서 이에 대응될 수 있는 dataset Modality 샘플 $\mathbf{x}_0^1, \cdots, \mathbf{x}_0^T$ 은 Markov process를 전제로 샘플링하기 때문에 latent interpolation이 image에서 유의미한 interpolation으로 이어지지 않는다는 문제가 있다.</u>
- 그런데 이를 consistency model과 같이 Probability flow ODE의 solution에 대해 풀게 된다면 x_T 는 더이상 data modallity에 대해 one to many mapping이 아니게 된다.
- 따라서 GAN이 가지는 장점 중 하나인 latent manipulation을 통한 이미지 manipulation이 용이하다는 특징을 가져갈 수 있다.



3. Consistency Models

3.4) Zero-Shot Data Editing

• As consistency models are trained to recover \mathbf{x}_{ϵ} from any noisy input \mathbf{x}_t $t \in [\epsilon, T]$, they can perform **denoising for various noise levels** (Fig. 12)

추가적으로 sample의 modality와 더불어 condition이 들어가는 경우에도 zero-shot으로 사용할 수 있다는 장점이 발생한다. 예컨데 <u>좋은 성능의 image inpainting, colorization 그리고 super-resolution 등을 수행할 수 있는 Diffusion 기반의 모델은 모두 해당 task에 대한 목적을 가지고 explicit 하게 학습이 전제되어야한다. 하지만 앞서 말했던 것과 같이 consistency model은 어떠한 수준의 noise에서도 x_€을 복구할 수 있게끔 학습되기 때문에 여러 noise level에 대한 denoising이 가능하다.
</u>

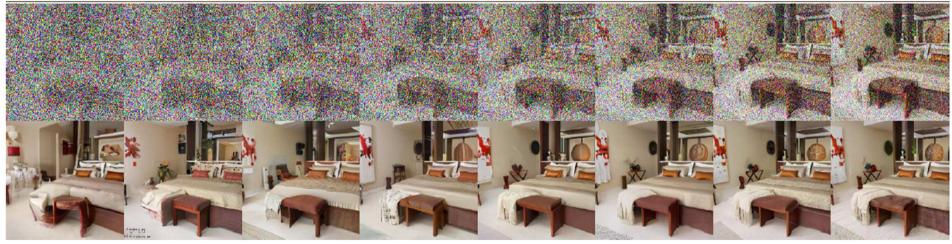


Fig. 12. Single-step denoising with a consistency model. The leftmost images are ground truth. For every two rows, the top row shows noisy images with different noise levels, while the bottom row gives denoised images.

3. Consistency Models

3.4) Zero-Shot Data Editing

- Multistep generation procedure in Algorithm 1
 - Uuseful for **solving certain inverse problems in zero shot** by using an **iterative replacement procedure** similar to that of diffusion models.
 - Enables many applications in the context of **image editing**, including **inpainting** (Fig. 10), **colorization** (Fig. 8), **super-resolution** (Fig. 6b) and **stroke-guided image editing** (Fig. 13) as in SDEdit (Meng et al., 2021).

Fig. 10. Masked images (left), imputed images by a consistency model (middle), and ground truth (right).

3. Consistency Models

3.4) Zero-Shot Data Editing

- <u>어떠한 input이 들어가더라도 multiple step generation을 수행하게 되면 임의의 input에 대해 그 시작점을 찾을</u> 수 있게 되는 것이다 (condition이 들어갈 때는 단순히 prior sampling 부분만 skip하면 될 것 같음).
- 만약 input이 grey image라면 이를 consistency model에 대해 multistep(Noise를 더하고 \mathbf{x}_0 를 예측하고를 수차례 반복)을 적용할 수 있다.

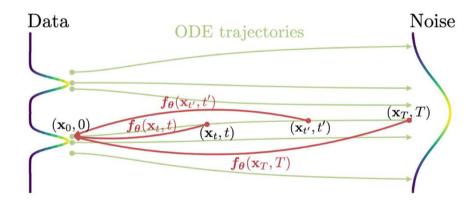
• 이렇듯 딱히 <u>condition에 대해 따로 학습할 필요가 없다</u>는 부분은 아래와 같이 inpainting, super-resolution 그리고 SDEdit(painting to image)와 같은 task에 자연스럽게 사용될 수 있다는 장점을 부여해준다.

4. Training Consistency Models vis Distillation

• Method for training consistency models based on distilling a pretrained score model $s_{\phi}(\mathbf{x},t)$.

Empirical PF ODE

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = -t \mathbf{s}_{\phi}(\mathbf{x}_t, t). \tag{3}$$



- Consider discretizing the time horizon $[\epsilon, T]$; Ts into N-1 sub-intervals, with boundaries $t_1 = \epsilon < t_2 < \cdots < t_N = T$
- In practice, follow Karras et al. (2022), boundaries

$$t_i = (\epsilon^{\frac{1}{\rho}} + \frac{i-1}{N-1}(T^{\frac{1}{\rho}} - \epsilon^{\frac{1}{\rho}}))^{\rho}, \ \rho = 7$$

Consistency Distillation (CD)

PF ODE

$$-d\mathbf{x}_t = \left[\boldsymbol{\mu}(\mathbf{x}_t, t) - \frac{1}{2} \sigma(t)^2 \nabla \log p_t(\mathbf{x}_t) \right] dt.$$
 (2)

PF ODE에서 실제 데이터 분포에 대한 socre를 구할 수 없으므로, 학습된 네트워크의 score prediction을 대입하면 식(3)과 같이 empirical PF-ODE를 문제로 가져올 수 있다.

- When N is sufficiently large, obtain an accurate estimate of \mathbf{x}_{t_n} from $\mathbf{x}_{t_{n+1}}$ by running one discretization step of a numerical ODE solver.
- Estimate $\hat{\mathbf{x}}_{t_n}^{\phi}$ (Solver가 예측한 특정 시점에서의 함수값)

$$\hat{\mathbf{x}}_{t_n}^{\phi} := \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \phi), \tag{6}$$

 $\Phi(\cdots; \phi)$: Update function of a **one-step ODE solver** applied to the empirical PF ODE. (ϕ 가 ODE Solving에 관여하는 이유가 score estimator가 emprirical PF ODE를 풀고하자 하며, 사전 학습된 score estimator를 사용할 것임을 알려줌)

Using the Euler solver, $\Phi(\mathbf{x}, t; \phi) = -s_{\phi}(\mathbf{x}, t)$

$$\hat{\mathbf{x}}_{t_n}^{\phi} = \mathbf{x}_{t_{n+1}} - (t_n - t_{n+1})t_{n+1}s_{\phi}(\mathbf{x}_{t_{n+1}}, t_{n+1})$$

4. Training Consistency Models vis Distillation

- Due to the connection between the PF ODE in Eq. (2) and the SDE in Eq. (1), one can sample along the distribution of ODE trajectories by first sampling x~p_{data}, then adding Gaussian noise to x.
- Specifically, given a data point \mathbf{x} , we can generate a pair of adjacent data points $(\hat{\mathbf{x}}_{t_n}^{\phi}, \mathbf{x}_{t_{n+1}})$ on the PF ODE trajectory efficiently by sampling \mathbf{x} from the dataset, followed by sampling $\mathbf{x}_{t_{n+1}}$ from the transition density of the SDE $\mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$ and then computing $\hat{\mathbf{x}}_{t_n}^{\phi}$ using one discretization step of the numerical ODE solver according to Eq. (6).

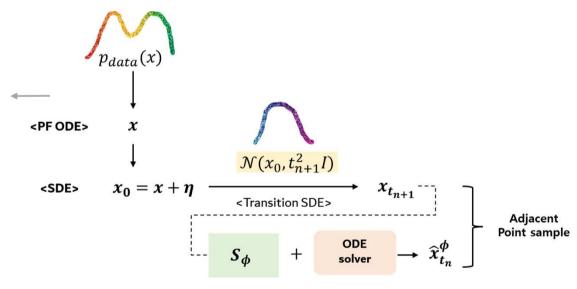
$$\hat{\mathbf{x}}_{t_n}^{\phi} = \mathbf{x}_{t_{n+1}} - (t_n - t_{n+1})t_{n+1}s_{\phi}(\mathbf{x}_{t_{n+1}}, t_{n+1})$$
 (6)

• Afterwards, we train the consistency model by **minimizing its output differences on the pair** $(\hat{\mathbf{x}}_{t_n}^{\phi}, \mathbf{x}_{t_{n+1}})$. This motivates our following **consistency distillation loss** for training consistency models.

Consistency Distillation (CD)

사실 SDE를 PF-ODE로 바꾸면서 생기는 오차는 실제 score estimate function 과의 오차와 부합하게 된다. 이 부분에 대한 connection을 해주기 위해서 강제로 1 to many mapping을 만들어줄 수 있다.;

$$\mathbf{x} \sim p_{\text{data}}$$
, $\mathbf{x} = \mathbf{x} + \eta$ (Gaussian Noise)



• 이렇게 샘플링한 adjacent point들에 대해 consistency network를 학습함

4. Training Consistency Models vis Distillation

Consistency Distillation (CD)

➤ Definition 1

• The consistency distillation loss is defined as

$$\begin{split} \mathcal{L}_{CD}^{N}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}; \boldsymbol{\phi}) \coloneqq & \\ & \mathbb{E}[\lambda(t_n) d(\boldsymbol{f_{\boldsymbol{\theta}}}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \boldsymbol{f_{\boldsymbol{\theta}^{-}}}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}}, t_n))], \end{split}$$

The expectation is taken with respect to $\mathbf{x} \sim p_{\text{data}}$, $n \sim \mathcal{U}[1, N-1]$, and $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$.

- ✓ $\mathcal{U}[1, N-1]$: Uniform distribution over $\{1, 2, \dots, N-1\}$
- \checkmark $\lambda(\cdot) \in \mathbb{R}^+$: A positive weighting function, $(\lambda(t_n) = 1 \text{ performs})$ well across all tasks and datasets); 시간에 따른 kenrel 분포 변화때문에 loss에 weight를 주기 위한 term
- \checkmark θ⁻ : A running average of the past values of θ during the course of optimization
- ✓ $d(\cdot,\cdot)$: A metric function that satisfies $\forall \mathbf{x}, \mathbf{y}: d(\mathbf{x}, \mathbf{y}) \geq 0$ and $d(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$.

• 학습 방법은 간단하게 두 인접한 sample point(하나는 forward SDE에 따라 샘플링, 하나는 이렇게 샘플링된 것을 score estimator와 numerical ODE solver를 통해 궤도 예측)를 각각 네트워크에 통과한 결과가 서로 같도록 한다.

- 학습의 주체가 되는 θ 가 **student parameter**로 loss에 대한 gradient descent를 받게 되고, θ^- 는 **teacher parameter**로 student parameter를 EMA 방식으로 가져간다. 흔히 알고있는 distillation 방법이랑 동일하다.
- 거리 메트릭은 이것저것 다 가능한데 이미지 생성에 주로 사용되는 MSE, L1 그리고 LPIPS를 해당 논문에서는 모두 실험했으며, weight term인 $\lambda(\cdot)$ 는 심플하게 1로 고정해서 사용하는 것이 모든 task 및 dataset에 대해 괜찮은 성능을 보였다고 밝힌다

4. Training Consistency Models vis Distillation

Algorithm 2 Consistency Distillation (CD)

Input: dataset
$$\mathcal{D}$$
, initial model parameter $\boldsymbol{\theta}$, learning rate η , ODE solver $\Phi(\cdot,\cdot;\boldsymbol{\phi})$, $d(\cdot,\cdot)$, $\lambda(\cdot)$, and μ $\boldsymbol{\theta}^- \leftarrow \boldsymbol{\theta}$ repeat

Sample $\mathbf{x} \sim \mathcal{D}$ and $n \sim \mathcal{U}[\![1,N-1]\!]$
Sample $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x};t_{n+1}^2\boldsymbol{I})$
 $\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1})\Phi(\mathbf{x}_{t_{n+1}},t_{n+1};\boldsymbol{\phi})$
 $\mathcal{L}(\boldsymbol{\theta},\boldsymbol{\theta}^-;\boldsymbol{\phi}) \leftarrow$
 $\lambda(t_n)d(f_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}},t_{n+1}),f_{\boldsymbol{\theta}^-}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}},t_n))$
 $\boldsymbol{\psi} \leftarrow \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta\nabla_{\boldsymbol{\theta}}\mathcal{L}(\boldsymbol{\theta},\boldsymbol{\theta}^-;\boldsymbol{\phi})$

Update $\boldsymbol{\theta}^-$ with EMA(exponential moving average) until convergence

 $\theta^- \approx \theta$

Consistency Distillation (CD)

- f_{θ} : 학습의 주체가 되는 f_{θ} 를 student network가 아닌 online(학습되는) network
- f_{θ^-} : EMA로 파라미터를 받는 f_{θ^-} 를 teacher network가 아닌 target(목적 이 되는) network
- **EMA update** and "**stopgrad**" operator can greatly stabilize the training process and improve the final performance of the consistency model
- Since θ^- is a running average of the history of θ , we have $\theta^- = \theta$ when the optimization of Algorithm 2 converges
- > The target and online consistency models will eventually match each other
- Consistency distillation loss는 무한히 증가하는 time step sample N에 대해 학습될 때 target과 online parameter를 같게 만들 수 있으며, 이는 곧 distillation의 주체가 되는 consistency network가 완벽하게 모든 정보를 이 어받았다고 이해할 수 있다.

4. Training Consistency Models vis Distillation

Algorithm 2 Consistency Distillation (CD)

Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , ODE solver $\Phi(\cdot,\cdot;\boldsymbol{\phi}), d(\cdot,\cdot), \lambda(\cdot)$, and μ $\boldsymbol{\theta}^- \leftarrow \boldsymbol{\theta}$

repeat

Sample
$$\mathbf{x} \sim \mathcal{D}$$
 and $n \sim \mathcal{U}[1, N-1]$
Sample $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$
 $\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \boldsymbol{\phi})$
 $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-; \boldsymbol{\phi}) \leftarrow$
 $\lambda(t_n) d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \boldsymbol{f}_{\boldsymbol{\theta}^-}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}}, t_n))$

$$\vee \theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^-; \phi)$$

 $\checkmark \theta^- \leftarrow \text{stopgrad}(\mu \theta^- + (1 - \mu)\theta)$

until convergence

Update θ^- with EMA(exponential moving average) $\theta^- \approx \theta$

Theorem 1. Let $\Delta t := \max_{n \in [\![1,N-1]\!]} \{|t_{n+1} - t_n|\}$, and $f(\cdot,\cdot;\phi)$ be the consistency function of the empirical PF ODE in Eq. (3). Assume f_{θ} satisfies the Lipschitz condition: there exists L > 0 such that for all $t \in [\epsilon,T]$, \mathbf{x} , and \mathbf{y} , we have $\|f_{\theta}(\mathbf{x},t) - f_{\theta}(\mathbf{y},t)\|_2 \leq L \|\mathbf{x} - \mathbf{y}\|_2$. Assume further that for all $n \in [\![1,N-1]\!]$, the ODE solver called at t_{n+1} has local error uniformly bounded by $O((t_{n+1} - t_n)^{p+1})$ with $p \geq 1$. Then, if $\mathcal{L}_{CD}^N(\theta,\theta;\phi) = 0$, we have

$$\sup_{n,\mathbf{x}} \|\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x},t_n) - \mathbf{f}(\mathbf{x},t_n;\boldsymbol{\phi})\|_2 = O((\Delta t)^p).$$

Proof. The proof is based on induction and parallels the classic proof of global error bounds for numerical ODE solvers (Süli & Mayers, 2003). We provide the full proof in Appendix A.2. □

Numerical ODE가 가지는 bounded condition(numerical하게 푼 solution이 실제 solution과 가지는 오차가 특정 범위 내에 존재한다는 가정) 과 consistency network f가 가지는 Lipshitz condition을 만족한다는 조건 상에서 loss function의 supremum 또한 수렴한다는 증명을 할 수 있다. 이는 곧 empirical PF ODE(Consistency model), 보다 엄밀히 말하자면 consistency network가 distillation되는 실제 SDE 궤도에 따라 Numerical ODE와 함께 수렴이 가능하다는 증거가 된다.

If local error uniformly bounded by
$$O((t_{n+1}-t_n)^{p+1}),$$
 $\sup_{n,x} \parallel f_{\theta}(x,t_n) - f(x,t_n;\phi) \parallel_2 = O((\Delta t)^p)$

5. Training Consistency Models in Isolation

- Training in Distillation: Consistency model를 score network의 정보 와 ODE solver를 사용하여 어떤 식으로 consistency loss를 수렴시킬 수 있는지에 대해 증명하는 과정이었다.
- Training in Isolation: Consistency model이 기존 diffusion 방식에서 벗어난 **PF ODE** 자체로의 가능성을 보여주며, 새로운 생성 모델의 시작이라는 기준이 된 학습법에 대해 언급하도록 한다.
- ➤ PD ODE에 Score estimator 없이 구하는 방법
- 구하고 싶은 score를 실제 data의 marginal distribution에 대해 역으로 projection하면 적분식이 나온다.

$$abla \log p_t(x_t) =
abla_{x_t} \log \int p_{ ext{data}}(x) p(x_t|x) dx$$

• log에 대한 미분은 closed form으로 정리된다.

$$abla \log p_t(x_t) = rac{\int p_{ ext{data}}(x) \overline{
abla_{x_t} p(x_t|x)} dx}{\int p_{ ext{data}}(x) p(x_t|x) dx}$$

Consistency Training (CT)

- Distillation 방식의 경우 사전 학습된 diffusion process model이 필요하고, 이를 통해 score estimation $s_{\phi}(\mathbf{x},t)$ 를 미분 방정식의 한 요소로 사용할 수 밖에 없었다.
- 만약 Consistency model을 단독으로 학습시키고자 한다면 해당 의존성을 없애버려야한다(아래의 식에서 $\nabla_x \log p_t(x)$ 를 구해야함).

PF ODE
$$dx_t = \left(\mu(x_t,t) - rac{1}{2}\sigma(t)^2
abla_x \log p_t(x_t)
ight) dt$$

• 확률 분포 $p(x_t|x)$ 에 대한 미분은 log likelihood $log(p(x_t|x))$ 에 대한 미분으로 치확할 수 있고, 분모/분자 정리하면 다음과 같다.

$$egin{aligned}
abla \log p_t(x_t) &= rac{\int p_{ ext{data}}(x) p(x_t|x)
abla_{x_t} \log p(x_t|x) dx}{\int p_{ ext{data}}(x) p(x_t|x) dx} \ &= rac{\int p_{ ext{data}}(x) p(x_t|x)
abla_{x_t} \log p(x_t|x) dx}{p_t(x_t)} \end{aligned}$$

•
$$x_t$$
는 x 와 관련없
으므로, 상수 취급 $=\int rac{p_{ ext{data}}(x)p(x_t|x)}{p_t(x_t)}
abla_{x_t} \log p(x_t|x) dx$

5. Training Consistency Models in Isolation

Consistency Training (CT)

• Bayes' rule에 따라 조건부의 위치가 바뀌게 되고,

$$egin{aligned}
abla \log p_t(x_t) &= \int rac{p_{ ext{data}}(x)p(x_t|x)}{p_t(x_t)}
abla_{x_t} \log p(x_t|x) dx \ &= \int p(x|x_t)
abla_{x_t} \log p(x_t|x) dx \end{aligned}$$

• 이는 x_t 를 조건으로 하는 확률 분포에 따른 x에 대해 평균을 구하는 것과 같다.

$$abla \log p_t(x_t) = \mathbb{E}(
abla_{x_t} \log p(x_t|x)|x_t)$$
 • 조건부 확률은 diffusion process에서 가우시안 커널로 정의가 됨

• 조건부 확률은 diffusion

• 이처럼 근사시킬 수 있다. 물론 가지고 있는 샘플 내에서 평균을 구하는 과정 이 되기 때문에 numerical error는 존재할 수 밖에 없다. 아무튼 이렇게 구한 score를 사용하게 되면 score estimation을 해주는 pre-trained network 없이 샘플링이 가능하고, 이 샘플들을 통해 consistency network 학습이 가 능하다.

5. Training Consistency Models in Isolation

- Trained without relying on any pre-trained diffusion models.
- This differs from diffusion distillation techniques, making consistency models a new independent family of generative models
- Consistency distillation; Use a pre-trained score model $s_{\phi}(\mathbf{x},t)$ to approximate the ground truth score function $\nabla \log p_t(\mathbf{x})$
- To get rid of this dependency, we need to seek other ways to estimate the score function
- There exists an **unbiased estimator** of $V \log p_t(\mathbf{x}_t)$ due to the following identity

$$abla \log p_t(\mathbf{x}_t) = -\mathbb{E}\left[\frac{\mathbf{x}_t - \mathbf{x}}{t^2} \mid \mathbf{x}_t\right]$$

$$\mathbf{x} \sim p_{\mathsf{data}} \text{ and } \mathbf{x}_t \sim \mathcal{N}(\mathbf{x}; t^2 \mathbf{I})$$

• Given \mathbf{x} and \mathbf{x}_t , we can form a *Monte Carlo estimate* of $\nabla \log p_t(\mathbf{x}_t)$ with $-(\mathbf{x}_t - \mathbf{x})/t^2$.

Theorem 2. Let $\Delta t := \max_{n \in [\![1,N-1]\!]} \{|t_{n+1} - t_n|\}$. Assume d and f_{θ^-} are both twice continuously differentiable with bounded second derivatives, the weighting function $\lambda(\cdot)$ is bounded, and $\mathbb{E}[\|\nabla \log p_{t_n}(\mathbf{x}_{t_n})\|_2^2] < \infty$. Assume further that we use the Euler ODE solver, and the pre-trained score model matches the ground truth, i.e., $\forall t \in [\epsilon, T] : s_{\phi}(\mathbf{x}, t) \equiv \nabla \log p_t(\mathbf{x})$. Then,

$$\mathcal{L}_{CD}^{N}(\theta, \theta^{-}; \phi) = \mathcal{L}_{CT}^{N}(\theta, \theta^{-}) + o(\Delta t), \tag{9}$$

where the expectation is taken with respect to $\mathbf{x} \sim p_{data}$, $n \sim \mathcal{U}[1, N-1]$, and $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$. The consistency training objective, denoted by $\mathcal{L}_{CT}^N(\theta, \theta^-)$, is defined as

 $\mathbb{E}[\lambda(t_n)d(\mathbf{f}_{\theta}(\mathbf{x}+t_{n+1}\mathbf{z},t_{n+1}),\mathbf{f}_{\theta^-}(\mathbf{x}+t_n\mathbf{z},t_n))], (10)$ Consistency training (CT) loss
where $\mathbf{z} \sim \mathcal{N}(\mathbf{0},\mathbf{I})$. Moreover, $\mathcal{L}_{CT}^N(\theta,\theta^-) \geqslant O(\Delta t)$ if $\inf_N \mathcal{L}_{CD}^N(\theta,\theta^-;\phi) > 0$.

Proof. The proof is based on Taylor series expansion and properties of score functions (Lemma 1). A complete proof is provided in Appendix A.3.

 This estimate actually suffices to replace the pre-trained diffusion model in consistency distillation, when using the Euler method (or any higher order method) as the ODE solver in the limit of N→∞

5. Training Consistency Models in Isolation

Consistency training (CT) loss

$$\mathcal{L}_{CT}^{N}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}) \coloneqq \mathbb{E}[\lambda(t_n)d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x} + t_{n+1}\mathbf{z}, t_{n+1}), \boldsymbol{f}_{\boldsymbol{\theta}^{-}}(\mathbf{x} + t_{n}\mathbf{z}, t_{n}))]$$
(10)

- 1) N is small (i.e., Δt is large):
- CT loss has less "variance" but more "bias" with respect to the underlying consistency distillation loss
- Facilitates faster convergence at the beginning of training
- 2) N is large (i.e., Δt is small):
- CT loss has more "variance" but less "bias"
- Desirable when closer to the end of training.
- For best performance, find that μ should change along with N. according to a schedule function $\mu(\cdot)$.

Consistency Training (CT)

Algorithm 3 Consistency Training (CT)

Input: dataset \mathcal{D} , initial model parameter θ , learning rate η , step schedule $N(\cdot)$, EMA decay rate schedule $\mu(\cdot)$, $d(\cdot,\cdot)$, and $\lambda(\cdot)$ $\theta^- \leftarrow \theta$ and $k \leftarrow 0$

repeat

Sample $\mathbf{x} \sim \mathcal{D}$, and $n \sim \mathcal{U}[1, N(k) - 1]$ Sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathcal{L}(\theta, \theta^-) \leftarrow$ $\lambda(t_n)d(f_{\theta}(\mathbf{x}+t_{n+1}\mathbf{z},t_{n+1}),f_{\theta}(\mathbf{x}+t_n\mathbf{z},t_n)$ $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^{-})$ $\theta^- \leftarrow \operatorname{stopgrad}(\mu(k)\theta^- + (1 - \mu(k))\theta)$ $k \leftarrow k + 1$ until convergence

5. Training Consistency Models in Isolation

- 길게 증명과정이 있었지만 process는 간단하게도 인접 샘플들을 모두 사전 정의한 diffusion SDE에 따라 생성, 이를 사용하여 consistency model을 학습시키게 된다.
- 해당 process를 따르는 consistency network 학습 loss는 다변수 standard gaussian 변수 $z \sim \mathcal{N}(0, I)$ 에 대해 다음과 같이 변한다.

$$\mathcal{L}^N_{CT}(heta, heta^-) := \mathbb{E}(\lambda(t_n)d(f_ heta(x+t_{n+1}z,t_{n+1}),\ f_{ heta^-}(x+t_nz,t_n)))$$

• 해당 loss를 수렴시키는 과정이 distillation loss를 수렴시키는 것과 결과적으로 동일함을 증명할 수 있다 ☞ Appendix 2

Consistency Training (CT)

```
Algorithm 3 Consistency Training (CT)

Input: dataset \mathcal{D}, initial model parameter \theta, learning rate \eta, step schedule N(\cdot), EMA decay rate schedule \mu(\cdot), d(\cdot, \cdot), and \lambda(\cdot)
\theta^- \leftarrow \theta and k \leftarrow 0

repeat

Sample \mathbf{z} \sim \mathcal{D}, and n \sim \mathcal{U}[\![1, N(k) - 1]\!]
Sample \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
\mathcal{L}(\theta, \theta^-) \leftarrow \lambda(t_n)d(f_{\theta}(\mathbf{x} + t_{n+1}\mathbf{z}, t_{n+1}), f_{\theta^-}(\mathbf{x} + t_n\mathbf{z}, t_n))
\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^-)
\theta^- \leftarrow \text{stopgrad}(\mu(k)\theta^- + (1 - \mu(k))\theta)
k \leftarrow k + 1
until convergence
```

6. Experimental Results

6.1 Training Consistency Models

- The effect of various hyperparameters on the performance of consistency models trained by consistency distillation (CD) and consistency training (CT).
- 1) Focus on effect of the metric function $d(\cdot,\cdot)$, the ODE solver, and the number of discretization steps N in CD,
- 2) Then, Investigate effect of the schedule functions $N(\cdot)$ and $\mu(\cdot)$ in CT.
- Fig.3 (a): LPIPS loss가 가장 효과적인 distance metric임을 알 수 있음
- Fig.3 (b): LPIPS를 고정 metric으로 활용하여 단계단계 실험을 진행한다. (b)에서는 solver에 대한 학습 효과를 보는데, 1차 근사만 고려하는 Euler보다는 2차 근사를 고려하는 Heun이 좀 더 좋은 성능을 보임.
- Fig.3 (c): 앞서 bias를 줄이기 위해 테스트한 time step sample 수 N에 대한 실험, 당연하게도 N이 커질수록 성능이 좋아진다. N이 어느 정도 증가하면 그 이후로는 성능 수렴이 발생하는 것도 함께 확인할 수 있다. (아무래도 numerical ODE에 따른 성능 향상의 bottleneck이지 않을까 생각해봄.)

Metric Function : l_2 distance, l_1 distance and the Learned Perceptual Image Patch Similarity (**LPIPS**, Zhang et al. (2018))

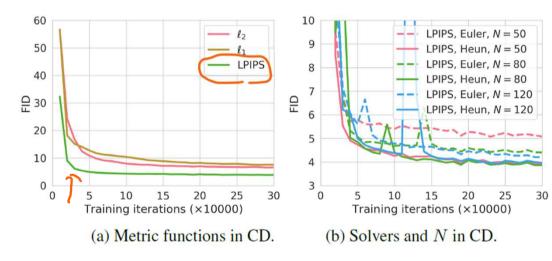


Fig. 3. Various factors that affect consistency distillation (CD) and consistency training (CT) on CIFAR-10. The best configuration for CD is LPIPS, Heun ODE solver, and N=18. Our adaptive schedule functions for N=18 and μ make CT converge significantly faster than fixing them to be constants during the course of optimization.

6. Experimental Results

6.1 Training Consistency Models

- Fig.3 (c): 앞서 bias를 줄이기 위해 테스트한 time step sample 수 N에 대한 실험, 당연하게도 N이 커질수록 성능이 좋아진다. N이 어느 정도 증가하면 그 이후로는 성능 수렴이 발생하는 것도 함께 확인할 수 있다. (아무래도 numerical ODE에 따른 성능 향상의 bottleneck이지 않을까 생각해봄.)
- Fig.4(d): CT를 사용한 학습 과정 (일단 FID가 현저히 떨어지는건 어쩔 수 없는 한계점)
 - ✓ CT의 경우에는 CD와는 다르게 특정 numerical ODE solver에 성능이 좌우되지 않기 때문에(학습에 사용되는 샘플링은 사전에 정의된 커널로함) solver를 사용할 필요가 없다. CT의 경우에는 distillation이 사용되지 않기 때문에 N에 대한 효과가 두드러짐. → 예컨데 N이 너무 작으면빠른 수렴은 가능했지만 샘플링 성능이 좋지 못하고, N을 키우면 수렴은좀 느려지지만 샘플링 성능은 향상된다. 이 두 가지 장점을 같이 사용하기위해 N을 조금씩 증가시키면서 학습시키는 방법(보라색)을 고안하였고, EMA factor µ 또한 이에 맞춰 점차 증가시키는 방법을 사용하였다.
 - ✓ 그래프를 보면 빠른 성능 수렴 + 높은 샘플링 퀄리티(FID)를 보이는 것을 확인할 수 있다.

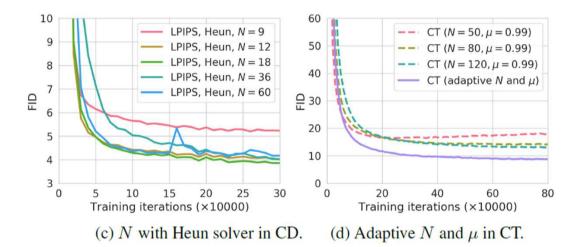


Fig. 3. Various factors that affect consistency distillation (CD) and consistency training (CT) on CIFAR-10. The best configuration for CD is LPIPS, Heun ODE solver, and N=18. Our adaptive schedule functions for N=18 and μ make CT converge significantly faster than fixing them to be constants during the course of optimization.

6. Experimental Results

6.1 Training Consistency Models

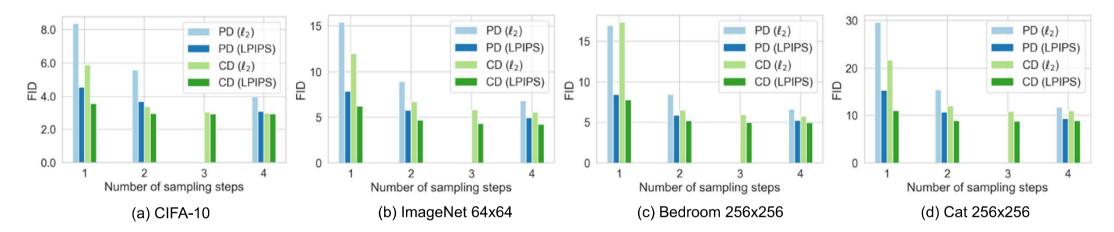


Fig. 4. **Multistep image generation** with consistency distillation (CD). CD outperforms progressive distillation (PD) across all datasets and sampling steps. The only exception is single-step generation on Bedroom 256x256.

6. Experimental Results

6.2. Few-Step Image Generation

Distillation

- All methods distill from an EDM(Karras et al., 2022) model that we pre-trained in-house.
- Note that across all sampling iterations, using the LPIPS metric uniformly improves PD(progressive distillation) compared to the squared \$\ell2\$ distance in the original paper of Salimans & Ho (2022).
- Both PD(progressive distillation) and CD(consistency distillation) improve as we take more sampling steps.
- We find that CD uniformly outperforms PD across all datasets, sampling steps, and metric functions considered, except for single-step generation on Bedroom 256x256, where CD with \(\ell2\) slightly underperforms PD with \(\ell2\).
- Table 1, CD even outperforms distillation approaches that require synthetic dataset construction, such as Knowledge Distillation (Luhman & Luhman, 2021) and DFNO (Zheng et al., 2022).
- EDM: Tero Karras, Miika Aittala, Timo Aila, Samuli Laine, "Elucidating the Design Space of Diffusion-Based Generative Models," NeurIPS 2022. https://github.com/NVlabs/edm

Direct Generation

- Compare the sample quality of consistency training (CT) with other generative models using one-step and two-step generation.
- CT outperforms all single-step, non-adversarial generative models.
- CT obtains comparable quality to PD for single-step generation without relying on distillation

EDM (Elucidating the Design Space of Diffusion-Based Generative Models)

	VP [49]	VE [49]	iDDPM [37] + DDIM [47]	Ours ("EDM")		
Sampling (Section 3)				0.115 (2.21.12)		
ODE solver	Euler	Euler	Euler	2 nd order Heun		
Time steps $t_{i < N}$	$1 + \frac{i}{N-1}(\epsilon_{\rm s} - 1)$	$\sigma_{\mathrm{max}}^2 \left(\sigma_{\mathrm{min}}^2/\sigma_{\mathrm{max}}^2\right)^{\frac{i}{N-1}}$	$u_{\lfloor j_0 + \frac{M-1-j_0}{N-1}i + \frac{1}{2} \rfloor}$, where	$\left(\sigma_{\max}^{\frac{1}{\rho}} + \frac{i}{N-1}\left(\sigma_{\min}^{\frac{1}{\rho}} - \sigma_{\max}^{\frac{1}{\rho}}\right)\right)^{\rho}$		
			$u_M = 0$ $u_{j-1} = \sqrt{\frac{u_j^2 + 1}{\max(\bar{\alpha}_{j-1}/\bar{\alpha}_j, C_1)} - 1}$	$\frac{\epsilon}{N-1}(\sigma_{\min}^{\rho} - \sigma_{\max}^{\rho}))'$		
Schedule $\sigma(t)$	$\sqrt{e^{\frac{1}{2}\beta_{\mathrm{d}}t^2+\beta_{\mathrm{min}}t}-1}$	\sqrt{t}	$t = \int \max(\tilde{\alpha}_{j-1}/\tilde{\alpha}_{j}, C_{1})$	t		
Scaling $s(t)$	$1/\sqrt{e^{rac{1}{2}eta_{ m d}t^2+eta_{ m min}t}}$	1	1	1		
Network and precondi	itioning (Section 5)					
Architecture of F_{θ}	DDPM++	NCSN++	DDPM	(any)		
Skip scaling $c_{\rm skip}(\sigma)$	1	1	1	$\sigma_{ m data}^2/\left(\sigma^2+\sigma_{ m data}^2 ight)$		
Output scaling $c_{\text{out}}(\sigma)$	$-\sigma$	σ	$-\sigma$	$\sigma \cdot \sigma_{\mathrm{data}} / \sqrt{\sigma_{\mathrm{data}}^2 + \sigma^2}$		
Input scaling $c_{in}(\sigma)$	$1/\sqrt{\sigma^2+1}$	1	$1/\sqrt{\sigma^2+1}$	$1/\sqrt{\sigma^2+\sigma_{ m data}^2}$		
Noise cond. $c_{\text{noise}}(\sigma)$	$(M-1) \sigma^{-1}(\sigma)$	$\ln(\frac{1}{2}\sigma)$	$M-1-\arg\min_{j} u_{j}-\sigma $	$\frac{1}{4}\ln(\sigma)$		
Training (Section 5)						
Noise distribution	$\sigma^{-1}(\sigma) \sim \mathcal{U}(\epsilon_t, 1)$	$\ln(\sigma) \sim \mathcal{U}(\ln(\sigma_{\min}),$	$\sigma = u_j, \ j \sim \mathcal{U}\{0, M-1\}$	$\ln(\sigma) \sim \mathcal{N}(P_{\mathrm{mean}}, P_{\mathrm{std}}^2)$		
Loss weighting $\lambda(\sigma)$	$1/\sigma^2$	$\ln(\sigma_{\max})$	$1/\sigma^2$ (note: *)	$\left(\sigma^2\!+\!\sigma_{\mathrm{data}}^2\right)/(\sigma\cdot\sigma_{\mathrm{data}})^2$		
Parameters	$eta_{\mathrm{d}} = 19.9, eta_{\mathrm{min}} = 0.1$	$\sigma_{\min} = 0.02$	$\bar{\alpha}_j = \sin^2(\frac{\pi}{2} \frac{j}{M(C_2 + 1)})$	$\sigma_{\min}~=0.002, \sigma_{\max}=80$		
	$\epsilon_{\rm s} = 10^{-3}, \epsilon_{\rm t} = 10^{-5}$	$\sigma_{\rm max} = 100$	$C_1 = 0.001, C_2 = 0.008$	$\sigma_{\mathrm{data}} = 0.5, \rho = 7$		
	M = 1000		$M = 1000, j_0 = 8^{\dagger}$	$P_{\text{mean}} = -1.2, P_{\text{std}} = 1.2$		
* iDDPM also employs a second loss term L_{vlb} † In our tests, $j_0 = 8$ yielded better FID than $j_0 = 0$ used by iDDPM						

6. Experimental Results

6.2. Few-Step Image Generation

Table 1: Sample quality on CIFAR-10. *Methods that require synthetic data construction for distillation

Memuran	1 TOP (1)	DID (II)	***
METHOD	$NFE(\downarrow)$	$FID(\downarrow)$	IS (↑)
Diffusion + Samplers			
DDIM (Song et al., 2020)	50	4.67	
DDIM (Song et al., 2020)	20	6.84	
DDIM (Song et al., 2020)	10	8.23	
DPM-solver-2 (Lu et al., 2022)	12	5.28	
DPM-solver-3 (Lu et al., 2022)	12	6.03	
3-DEIS (Zhang & Chen, 2022)	10	4.17	
Diffusion + Distillation			
Knowledge Distillation* (Luhman & Luhman, 2021)	1	9.36	
DFNO* (Zheng et al., 2022)	1	4.12	
1-Rectified Flow (+distill)* (Liu et al., 2022)	1	6.18	9.08
2-Rectified Flow (+distill)* (Liu et al., 2022)	1	4.85	9.01
3-Rectified Flow (+distill)* (Liu et al., 2022)	1	5.21	8.79
PD (Salimans & Ho, 2022)	1	8.34	8.69
CD	1	3.55	9.48
PD (Salimans & Ho, 2022)	2	5.58	9.05
CD	2	2.93	9.75

Direct Generation			
BigGAN (Brock et al., 2019)	1	14.7	9.22
CR-GAN (Zhang et al., 2019)	1	14.6	8.40
AutoGAN (Gong et al., 2019)	1	12.4	8.55
E2GAN (Tian et al., 2020)	1	11.3	8.51
ViTGAN (Lee et al., 2021)	1	6.66	9.30
TransGAN (Jiang et al., 2021)	1	9.26	9.05
StyleGAN2-ADA (Karras et al., 2020)	1	2.92	9.83
StyleGAN-XL (Sauer et al., 2022)	1	1.85	
Score SDE (Song et al., 2021)	2000	2.20	9.89
DDPM (Ho et al., 2020)	1000	3.17	9.46
LSGM (Vahdat et al., 2021)	147	2.10	
PFGM (Xu et al., 2022)	110	2.35	9.68
EDM (Karras et al., 2022)	36	2.04	9.84
1-Rectified Flow (Liu et al., 2022)	1	378	1.13
Glow (Kingma & Dhariwal, 2018)	1	48.9	3.92
Residual Flow (Chen et al., 2019a)	1	46.4	
GLFlow (Xiao et al., 2019)	1	44.6	
DenseFlow (Grcić et al., 2021)	1	34.9	
DC-VAE (Parmar et al., 2021)	1	17.9	8.20
CT	1	8.70	8.49
CT	2	5.83	8.85

METHOD	NFE (↓)	FID (↓)	Prec. (†)	Rec. (†)
ImageNet 64×64				
PD [†] (Salimans & Ho, 2022)	1	15.39	0.59	0.62
DFNO ^{†*} (Zheng et al., 2022)	1	8.35		
$\mathbf{C}\mathbf{D}^{\dagger}$	1	6.20	0.68	0.63
PD [†] (Salimans & Ho, 2022)	2	8.95	0.63	0.65
$\mathbf{C}\mathbf{D}^{\dagger}$	2	4.70	0.69	0.64
ADM (Dhariwal & Nichol, 2021)	250	2.07	0.74	0.63
EDM (Karras et al., 2022)	79	2.44	0.71	0.67
BigGAN-deep (Brock et al., 2019)	1	4.06	0.79	0.48
CT	1	13.0	0.71	0.47
CT	2	11.1	0.69	0.56
LSUN Bedroom 256×256				
PD [†] (Salimans & Ho, 2022)	1	16.92	0.47	0.27
PD [†] (Salimans & Ho, 2022)	2	8.47	0.56	0.39
$\mathbf{C}\mathbf{D}^{\dagger}$	1	7.80	0.66	0.34
$\mathbf{C}\mathbf{D}^{\dagger}$	2	5.22	0.68	0.39
DDPM (Ho et al., 2020)	1000	4.89	0.60	0.45
ADM (Dhariwal & Nichol, 2021)	1000	1.90	0.66	0.51
EDM (Karras et al., 2022)	79	3.57	0.66	0.45
SS-GAN (Chen et al., 2019b)	1	13.3		
PGGAN (Karras et al., 2018)	1	8.34		
PG-SWGAN (Wu et al., 2019)	1	8.0		
StyleGAN2 (Karras et al., 2020)	1	2.35	0.59	0.48
CT	1	16.0	0.60	0.17
CT	2	7.85	0.68	0.33

LSUN Cat 256×256				
PD [†] (Salimans & Ho, 2022)	1	29.6	0.51	0.25
PD [†] (Salimans & Ho, 2022)	2	15.5	0.59	0.36
$\mathbf{C}\mathbf{D}^{\dagger}$	1	11.0	0.65	0.36
$\mathbf{C}\mathbf{D}^{\dagger}$	2	8.84	0.66	0.40
DDPM (Ho et al., 2020)	1000	17.1	0.53	0.48
ADM (Dhariwal & Nichol, 2021)	1000	5.57	0.63	0.52
EDM (Karras et al., 2022)	79	6.69	0.70	0.43
PGGAN (Karras et al., 2018)	1	37.5		
StyleGAN2 (Karras et al., 2020)	1	7.25	0.58	0.43
CT	1	20.7	0.56	0.23
CT	2	11.7	0.63	0.36

Table 2: Sample quality on ImageNet 64x64, and LSUN Bedroom & Cat 256x256. †Distillation techniques

Direct Generation

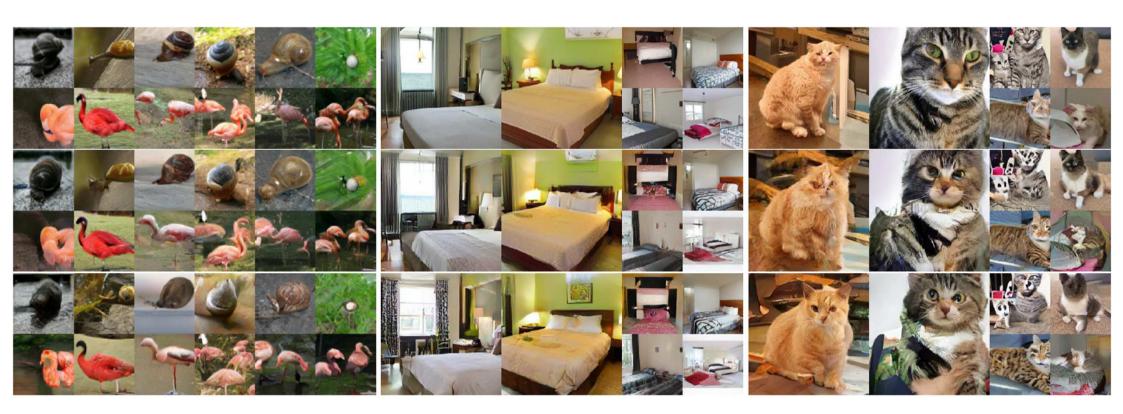
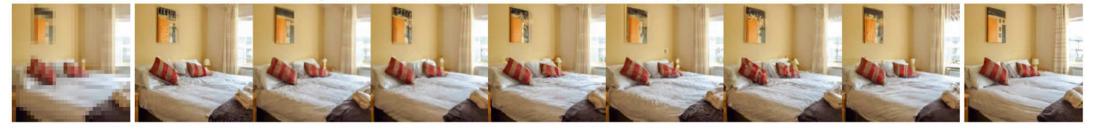


Figure 5: Samples generated by EDM (*top*), CT + single-step generation (*middle*), and CT + 2-step generation (*Bottom*). All corresponding images are generated from the same initial noise.

6.3 Zero-Shot Image Editing

(a) Left: The gray-scale image. Middle: Colorized images. Right: The ground-truth image.



(b) Left: The downsampled image (32 \times 32). Middle: Full resolution images (256 \times 256). Right: The ground-truth image (256 \times 256).

(c) Left: A stroke input provided by users. Right: Stroke-guided image generation.

Figure 6: Zero-shot image editing with a consistency model trained by consistency distillation on LSUN Bedroom 256×256 .

Appendix C. Additional Experimental Details

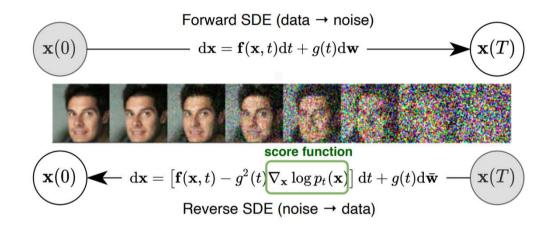
Model Architecture

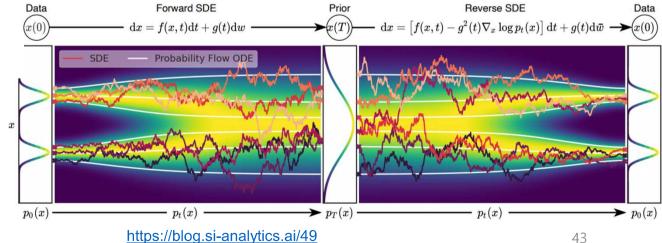
- Follow Song et al. (2021), Dhariwal & Nichol (2021) for model architectures.
- Use the NCSN++ architecture in Song et al. (2021) for all CIFAR-10 experiments, and take the corresponding network architectures from Dhariwal & Nichol (2021) when performing experiments on ImageNet 64x64, LSUN Bedroom 256x256 and LSUN Cat 256x256.

Song, Y., et al., Score-based generative modeling through stochastic differential equations. ICLR 2021.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on image synthesis. NeurIPS 2021.

Score-based Generative Modeling through Stochastic Differential Equations





Appendix C. Additional Experimental Details

Song, Y., et al., Score-based generative modeling through stochastic differential equations. ICLR 2021.

Algorithm 1 PC sampling (VE SDE)

1:
$$\mathbf{x}_N \sim \mathcal{N}(\mathbf{0}, \sigma_{\text{max}}^2 \mathbf{I})$$

2: **for**
$$i = N - 1$$
 to 0 **do**

3:
$$\mathbf{x}'_{i} \leftarrow \mathbf{x}_{i+1} + (\sigma_{i+1}^{2} - \sigma_{i}^{2}) \mathbf{s}_{\theta} * (\mathbf{x}_{i+1}, \sigma_{i+1})$$

4:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

5:
$$\mathbf{x}_i \leftarrow \mathbf{x}_i' + \sqrt{\sigma_{i+1}^2 - \sigma_i^2} \mathbf{z}$$

6: **for**
$$j = 1$$
 to M **do**

7:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

8:
$$\mathbf{x}_i \leftarrow \mathbf{x}_i + \epsilon_i \mathbf{s}_{\theta} * (\mathbf{x}_i, \sigma_i) + \sqrt{2\epsilon_i} \mathbf{z}$$

9: return x_0

Algorithm 2 PC sampling (VP SDE)

1:
$$\mathbf{x}_N \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: **for**
$$i = N - 1$$
 to 0 **do**

3:
$$\mathbf{x}'_{i} \leftarrow (2 - \sqrt{1 - \beta_{i+1}})\mathbf{x}_{i+1} + \beta_{i+1}\mathbf{s}_{\theta}*(\mathbf{x}_{i+1}, i + \beta_{i+1})\mathbf{x}_{\theta}$$

4:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

5:
$$\mathbf{x}_i \leftarrow \mathbf{x}_i' + \sqrt{\beta_{i+1}}\mathbf{z}$$

$$\mathbf{for}\ j = 1\ \mathbf{to}\ M\ \mathbf{do}$$

7:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

8:
$$\mathbf{x}_i \leftarrow \dot{\mathbf{x}}_i + \epsilon_i \mathbf{s}_{\theta*}(\mathbf{x}_i, i) + \sqrt{2\epsilon_i} \mathbf{z}$$

9: return x₀

Predictor-Corrector (PC) sampling

Variance Exploding stochastic differential equation (VE SDE)

Predictor-Corrector (PC) sampling

Variance Preserving stochastic differential equation (VP SDE)

X DDPM++ cont.
(VP) model

Predictor

Corrector

Dhariwal, P. and Nichol, A. **Diffusion models beat gans on image synthesis**. NeurIPS 2021.

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow sample from \mathcal{N}(0,\mathbf{I}) for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow sample from \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log p_{\phi}(y|x_t), \Sigma) end for return x_0
```

Algorithm 2 Classifier guided DDIM sampling, given a diffusion model $\epsilon_{\theta}(x_t)$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow sample from \mathcal{N}(0,\mathbf{I}) for all t from T to 1 do \hat{\epsilon} \leftarrow \epsilon_{\theta}(x_t) - \sqrt{1-\bar{\alpha}_t} \, \nabla_{x_t} \log p_{\phi}(y|x_t) x_{t-1} \leftarrow \sqrt{\bar{\alpha}_{t-1}} \left( \frac{x_t - \sqrt{1-\bar{\alpha}_t}\hat{\epsilon}}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1-\bar{\alpha}_{t-1}}\hat{\epsilon} end for return x_0
```

Appendix C. Additional Experimental Details

Parameterization for Consistency Models

- Use the same architectures for consistency models as those used for EDMs. Slightly modify the skip connections in EDM to ensure the boundary condition holds for consistency models.
- · Parameterize a consistency model

$$f_{\theta}(\mathbf{x}, t) = c_{\text{skip}}(t)\mathbf{x} + c_{\text{out}}(t)F_{\theta}(\mathbf{x}, t).$$

✓ EDM

$$c_{\rm skip}(t) = rac{\sigma_{
m data}^2}{t^2 + \sigma_{
m data}^2}, \quad c_{
m out}(t) = rac{\sigma_{
m data}t}{\sqrt{\sigma_{
m data}^2 + t^2}}, \quad {
m where} \; \sigma_{
m data} = 0.5.$$

it does not satisfy the boundary condition when the smallest time instant $\epsilon \neq 0$.

✓ Modify them

$$c_{
m skip}(t) = rac{\sigma_{
m data}^2}{(t-\epsilon)^2 + \sigma_{
m data}^2}, \quad c_{
m out}(t) = rac{\sigma_{
m data}(t-\epsilon)}{\sqrt{\sigma_{
m data}^2 + t^2}},$$

which clearly satisfies $c_{\text{skip}}(\epsilon) = 1$ and $c_{\text{out}}(\epsilon) = 0$.

Schedule Functions for Consistency Training

• Consistency generation requires specifying schedule functions N() and $\mu()$ for best performance.

$$N(k) = \left[\sqrt{\frac{k}{K} ((s_1 + 1)^2 - s_0^2) + s_0^2} - 1 \right] + 1$$
$$\mu(k) = \exp\left(\frac{s_0 \log \mu_0}{N(k)}\right),$$

- K: the total number of training iterations
- s₀: the initial discretization steps
- $s_1 > s_0$: the target discretization steps at the end of training
- μ_0 : the EMA decay rate at the beginning of model training.

Appendix C. Additional Experimental Details

Training Details

- In both consistency distillation and progressive distillation,
 - Distill EDMs (Karras et al., 2022).
 - Trained these EDMs for 600k and 300k iterations and reduced the batch size from 4096 to 2048 according to the specifications given in Karras et al. (2022).
 - In all **distillation** experiments, Initialized the consistency model with pre-trained EDM weights.
 - Table 3: Hyperparameters used for training CD and CT models

> For consistency training,

- Initialized the model randomly, just as did for training the EDMs.
- Trained all consistency models with the Rectified Adam optimizer (Liu et al., 2019), with no learning rate decay or warm-up, and no weight decay.
- Applied EMA to the weights of the online consistency models in both consistency distillation and consistency training, as well as to the weights of the training online consistency models according to Karras et al. (2022).

Hyperparameter	CIFAR-10		ImageNet 64×64		LSUN 256×256	
	CD	CT	CD	CT	CD	CT
Learning rate	4e-4	4e-4	8e-6	8e-6	1e-5	1e-5
Batch size	512	512	2048	2048	2048	2048
μ	0		0.95		0.95	
μ_0		0.9		0.95		0.95
s_0		2		2		2
s_1		150		200		150
EMA decay rate	0.9999	0.9999	0.999943	0.999943	0.999943	0.999943
Training iterations	800k	800k	600k	800k	600k	1000k
Mixed-Precision (FP16)	No	No	Yes	Yes	Yes	Yes
Dropout probability	0.0	0.0	0.0	0.0	0.0	0.0
Number of GPUs	8	8	64	64	64	64

https://github.com/openai/consistency_models

• Provide examples of **EDM training**, **consistency distillation**, **consistency training**, **single-step generation**, and **multistep generation** in scripts/launch.sh

EDM: Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating the design space of diffusion-based generative models. In Proc. NeurIPS, 2022

scripts/launch.sh

mpiexec -n 8 python edm_train.py --attention_resolutions 32,16,8 --class_cond
True --use_scale_shift_norm_True --dropout 0.1 --ema_rate
0.999,0.9999,0.9999432189950708 --global_batch_size 4096 --image_size 64 --lr
0.0001 --num_channels 192 --num_head_channels 64 --num_res_blocks 3
--resblock_updown True --schedule_sampler lognormal --use_fp16 True
--weight_decay 0.0 --weight_schedule karras --data_dir /path/to/imagenet

python -m orc.diffusion.scripts.train_imagenet_edm --attention_resolutions 32,16,8 --class_cond False --dropout 0.1 --ema_rate 0.999,0.9999,0.9999432189950708 --global_batch_size 256 --image_size 256 --lr 0.0001 --num_channels 256 --num_head_channels 64 --num_res_blocks 2 --resblock_updown True --schedule_sampler lognormal --use_fp16 True --use_scale_shift_norm False --weight_decay 0.0 --weight_schedule karras --data_dir /path/to/lsun_bedroom

mpiexec -n 8 python image_sample.py --training_mode edm --batch_size 64 --sigma_max 80 --sigma_min 0.002 --s_churn 0 --steps 40 --sampler heun --model_path edm_imagenet64_ema.pt --attention_resolutions 32,16,8 --class_cond True --dropout 0.1 --image_size 64 --num_channels 192 --num_head_channels 64 --num_res_blocks 3 --num_samples 50000 --resblock_updown True --use_fp16 True --use_scale_shift_norm True --weight_schedule karras

L CD^N (I2) on ImageNet-64

mpiexec -n 8 python cm_train.py --training_mode consistency_distillation --target_ema_mode fixed --start_ema_0.95 --scale_mode fixed --start_scales_40 --total_training_steps_600000 --loss_norm_l2 --lr_anneal_steps_0 --teacher_model_path /path/to/edm_imagenet64_ema.pt --attention_resolutions_32,16,8 --class_cond_True --use_scale_shift_norm_True --dropout_0.0 --teacher_dropout_0.1 --ema_rate_0.999,0.9999,0.9999432189950708 --global_batch_size_2048 --image_size_64 --lr_0.000008 --num_channels_192 --num_head_channels_64 --num_res_blocks_3 --resblock_updown_True --schedule_sampler_uniform_-use_fp16_True_-weight_decay_0.0 --weight_schedule_uniform_-data_dir_/path/to/data

L_CT^N on ImageNet-64
mpiexec -n 8 python cm_train.py --training_mode consistency_training
--target_ema_mode adaptive --start_ema 0.95 --scale_mode progressive
--start_scales 2 --end_scales 200 --total_training_steps 800000 --loss_norm lpips
--Ir_anneal_steps 0 --teacher_model_path /path/to/edm_imagenet64_ema.pt
--attention_resolutions 32,16,8 --class_cond True --use_scale_shift_norm True
--dropout 0.0 --teacher_dropout 0.1 --ema_rate 0.999,0.9999,0.9999432189950708
--global_batch_size 2048 --image_size 64 --Ir 0.0001 --num_channels 192
--num_head_channels 64 --num_res_blocks 3 --resblock_updown True

--schedule_sampler uniform --use_fp16 True --weight_decay 0.0 --weight_schedule uniform --data_dir /path/to/imagenet64

scripts/launch.sh

ImageNet-64
mpiexec -n 8 python image_sample.py --batch_size 256 --training_mode
consistency_distillation --sampler onestep --model_path /path/to/checkpoint
--attention_resolutions 32,16,8 --class_cond True --use_scale_shift_norm True
--dropout 0.0 --image_size 64 --num_channels 192 --num_head_channels 64
--num_res_blocks 3 --num_samples 500 --resblock_updown True --use_fp16 True
--weight_schedule_uniform

CD on ImageNet-64

mpiexec -n 8 python ternary_search.py --begin 0 --end 39 --steps 40 --generator determ --ref_batch /root/consistency/ref_batches/imagenet64.npz --batch_size 256 --model_path /root/consistency/cd_imagenet64_lpips.pt

- --attention_resolutions 32,16,8 --class_cond True --use_scale_shift_norm True
- --dropout 0.0 --image_size 64 --num_channels 192 --num_head_channels 64 --num res blocks 3 --num samples 50000 --resblock updown True --use fp16 True
- --num_res_blocks 3 --num_samples 50000 --resblock_updown True --use_fp16 True --weight schedule uniform

CT on ImageNet-64

mpiexec -n 8 python **ternary_search.py** --begin 0 --end 200 --steps 201 --generator determ --ref_batch /root/consistency/ref_batches/imagenet64.npz --batch_size 256 --model path /root/consistency/ct imagenet64.pt

- --attention resolutions 32,16,8 --class cond True --use scale shift norm True
- --dropout 0.0 --image size 64 --num channels 192 --num head channels 64
- --num_res_blocks 3 --num_samples 50000 --resblock_updown True --use_fp16 True --weight schedule uniform

scripts/launch.sh

Two-step sampling for CD (LPIPS) on ImageNet-64
mpiexec -n 8 python image_sample.py --batch_size 256 --training_mode
consistency_distillation --sampler multistep --ts 0,22,39 --steps 40 --model_path
/path/to/cd_imagenet64_lpips.pt --attention_resolutions 32,16,8 --class_cond True
--use_scale_shift_norm True --dropout 0.0 --image_size 64 --num_channels 192
--num_head_channels 64 --num_res_blocks 3 --num_samples 500
--resblock_updown True --use_fp16 True --weight_schedule uniform

Two-step sampling for CD (L2) on ImageNet-64
mpiexec -n 8 python image_sample.py --batch_size 256 --training_mode
consistency_distillation --sampler multistep --ts 0,22,39 --steps 40 --model_path
/path/to/cd_imagenet64_I2.pt --attention_resolutions 32,16,8 --class_cond True
--use_scale_shift_norm True --dropout 0.0 --image_size 64 --num_channels 192
--num_head_channels 64 --num_res_blocks 3 --num_samples 500
--resblock_updown True --use_fp16 True --weight_schedule uniform

Two-step sampling for CT on ImageNet-64
mpiexec -n 8 python image_sample.py --batch_size 256 --training_mode
consistency_training --sampler multistep --ts 0,106,200 --steps 201 --model_path
/path/to/ct_imagenet64.pt --attention_resolutions 32,16,8 --class_cond True
--use_scale_shift_norm True --dropout 0.0 --image_size 64 --num_channels 192
--num_head_channels 64 --num_res_blocks 3 --num_samples 500
--resblock_updown True --use_fp16 True --weight_schedule uniform

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating the design space of diffusion-based generative models. In Proc. NeurlPS, 2022

scripts/edm_train.py

```
def create argparser():
   defaults = dict(
       data dir="",
       schedule sampler="uniform",
       lr=1e-4.
       weight decay=0.0,
       lr anneal steps=0,
       global batch size=2048,
       batch size=-1,
       microbatch=-1. # -1 disables microbatches
        ema rate="0.9999", # comma-separated list of EMA values
       log interval=10,
        save interval=10000,
       resume checkpoint="",
       use fp16=False,
       fp16 scale growth=1e-3,
   defaults.update(model and diffusion defaults())
   parser = argparse.ArgumentParser()
   add dict to argparser(parser, defaults)
   return parser
```

```
cm/dist util.py: model and diffusion defaults()
```

```
def model and diffusion defaults():
    Defaults for image training.
    res = dict(
        sigma min=0.002,
        sigma max=80.0.
        image size=64,
       num channels=128,
        num res blocks=2,
        num heads=4.
        num heads upsample=-1,
        num head channels=-1.
        attention resolutions="32,16,8",
        channel mult="".
        dropout=0.0,
        class cond=False,
        use checkpoint=False,
        use scale shift norm=True,
        resblock updown=False,
        use fp16=False,
       use_new_attention_order=False,
       learn sigma=False,

∨ weight schedule="karras",
    return res
```

```
mpiexec -n 8 python edm train.py
--attention resolutions 32,16,8
--class cond True
--use scale shift norm True
--dropout 0.1
--ema rate
0.999,0.9999,0.9999432189950708
--global batch size 4096
--image size 64
--Ir 0.0001
--num channels 192
--num head channels 64
--num res blocks 3
--resblock updown True
--schedule sampler lognormal
--use fp16 True
--weight decay 0.0
--weight schedule karras
--data dir /path/to/imagenet
```

51

scripts/edm_train.py

```
data = load data(
def main():
    args = create argparser().parse args()
                                                                                                       batch_size=batch_size,
   dist util.setup dist()
                               (1) Setup a distributed process group
   logger.configure()
   logger.log("creating model and diffusion...")
                                                                                                                    (4) —
                                                                                                  TrainLoop(
   model, diffusion = create model and diffusion( (2)
                                                                                                   __model=model,
       **args_to_dict(args, model_and_diffusion_defaults().keys())

√diffusion=diffusion.

                                                                                                    ∨data=data.
   model.to(dist_util.dev()) "cuda", "cpu"
                                                                                                    batch size=batch size,
   schedule sampler = create_named_schedule_sampler(args.schedule_sampler, diffusion)
                                                 Create a ScheduleSampler from
                                                                                                      lr=args.lr,
   logger.log("creating data loader...")
                                                 a library of pre-defined samplers
                                                                                                      ema rate=args.ema rate,
   if args.batch size == -1:
       batch_size = args.global_batch_size // dist.get_world_size()
        if args.global_batch_size % dist.get_world_size() != 0:
            logger.log(
                                                                                                     use fp16=args.use fp16,
                f"warning, using smaller global_batch_size of
                 {dist.get_world_size()*batch_size} instead of {args.global_batch_size}"
   else:
        batch_size = args.batch_size
                                                                                                  ).run loop()
```

```
data dir=args.data dir.
   image size=args.image size,
   class_cond=args.class_cond,
  microbatch=args.microbatch.
  log_interval=args.log_interval,
  save interval=args.save interval,
  resume_checkpoint=args.resume_checkpoint,
  fp16_scale_growth=args.fp16_scale_growth,
schedule sampler=schedule sampler,
weight_decay=args.weight_decay,
lr anneal steps=args.lr anneal steps,
```

```
(1) cm/dist util.py : setpup dist()
def setup_dist():
    11 11 11
    Setup a distributed process group.
                                             • 분산 GPU training 시 NCCL
                                            • 분산 CPU training 시 Gloo
    if dist.is initialized():
                                            • 고성능 컴퓨팅 시 MPI
        return
    os.environ["CUDA VISIBLE DEVICES"] =
                        f"{MPI.COMM WORLD.Get rank() % GPUS PER NODE}"
    comm = MPI.COMM WORLD
    backend = "gloo" if not th.cuda.is available() else "nccl"
    if backend == "gloo":
        hostname = "localhost"
    else:
        hostname = socket.gethostbyname(socket.getfadn())
    os.environ["MASTER ADDR"] = comm.bcast(hostname, root=0)
    os.environ["RANK"] = str(comm.rank)
    os.environ["WORLD SIZE"] = str(comm.size)
```

dist.init process group(backend=backend, init method="env://")

port = comm.bcast(find free port(), root=0)

os.environ["MASTER PORT"] = str(port)

```
import io
import os
import socket

import blobfile as bf
from mpi4py import MPI 
import torch as th
import torch.distributed as dist

# Change this to reflect your cluster layout.
# The GPU for a given rank is (rank % GPUS_PER_NODE).
GPUS_PER_NODE = 8

SETUP_RETRY_COUNT = 3
```

- [MASTER_PORT] 0-순위의 프로세스를 호스트할 기기의 비어있는 포트 번호(free port)
- [MASTER_ADDR] 0-순위의 프로세스를 호스트할 기기의 IP 주소
- [WORLD_SIZE] : Number of processes participating in the job (작업에 사용되는 프로세스들의 개수) 즉, 분산 처리에서 사용할 총 gpu 개수
- [RANK] : Data Distributed Parallel에서 가동되는 process ID
 - ✓ Global Rank: 전체 node에 가동되는 process id
 - ✓ Local Rank: 각 node별 process id
- [Local Rank]: 노드 내 프로세스의 로컬 순위
 - ✓ Local Rank를 0으로 한다면 0번째 GPU를 우선순위로 작업이 진행되는 듯.

```
(2) cm/script util.py: create model and diffusion
from .karras diffusion import KarrasDenoiser
from .unet import UNetModel
import numpy as np
NUM_CLASSES = 1000
def create model and diffusion(
    image size,
    class_cond,
    learn sigma,
    num channels,
    num_res_blocks,
    channel_mult,
    num heads,
    num_head_channels,
    num_heads_upsample,
    attention_resolutions,
```

```
model, diffusion = create model and diffusion(
                  **args to dict(args, model and diffusion defaults().keys())
                    def args to dict(args, keys):
                        return {k: getattr(args, k) for k in keys}
model = create_model( (2)-1; UNet Model
                                                      diffusion = KarrasDenoiser(
                                                                                    (2)-2
    image size,
                                                          sigma data=0.5,
    num channels,
                                                          sigma_max=sigma_max,
    num_res_blocks,
                                                          sigma min=sigma min,
    channel mult=channel mult,
                                                          distillation=distillation,
    learn_sigma=learn_sigma,
                                                          weight schedule=weight schedule,
    class cond=class cond,
    use_checkpoint=use_checkpoint,
                                                      return model, diffusion
    attention resolutions=attention resolutions,
    num heads=num heads,
    num head channels=num head channels,
    num_heads_upsample=num_heads_upsample,
    use scale shift norm=use scale shift norm,
    dropout=dropout,
    resblock updown=resblock updown,
    use_fp16=use_fp16,
    use_new_attention_order=use_new_attention_order,
                                                                                 54
```

(2)-1 cm/script_util.py : create_model

```
def create_model(
    image size,
    num channels,
    num res blocks,
    channel mult="",
    learn sigma=False.
    class cond=False,
    use checkpoint=False.
    attention_resolutions="16",
    num heads=1.
    num_head_channels=-1,
    num heads upsample=-1.
    use scale shift norm=False,
    dropout=0,
    resblock updown=False,
    use fp16=False,
    use new attention order=False,
):
```

```
if channel mult == "":
    if image size == 512:
        channel mult = (0.5, 1, 1, 2, 2, 4, 4)
    elif image size == 256:
        channel_mult = (1, 1, 2, 2, 4, 4)
    elif image size == 128:
        channel_mult = (1, 1, 2, 3, 4)
    elif image size == 64:
        channel mult = (1, 2, 3, 4)
        raise ValueError(f"unsupported image size: {image size}")
else:

√ channel mult =
         tuple(int(ch mult) for ch mult in channel mult.split(","))
attention ds = []
for res in attention resolutions.split(","):
    attention_ds.append(image_size // int(res))
        image size == 64
        channel mult = (1,2,3,4)
        attention resolutions="32,16,8"
        attention ds = [2, 4, 8]
```

The full UNet model with attention and timestep embedding.


```
return UNetModel(
    image size=image size,
    in channels=3,
    model channels=num channels,
    out channels=(3 if not learn sigma else 6),
   num res blocks=num res blocks,
attention resolutions=tuple(attention ds),
    dropout=dropout,
channel mult=channel mult,
v num classes=(NUM CLASSES if class cond else None),
    use checkpoint=use checkpoint,
    use fp16=use fp16,
    num heads=num heads,
    num head channels=num head channels,
    num heads upsample=num heads upsample,
   use_scale_shift_norm=use_scale_shift_norm,
    resblock updown=resblock updown,
    use new attention order=use new attention order.
```

(2)-2 cm/karras_diffusion.py : class karrasDenoiser

```
class KarrasDenoiser:
                                         ❖ LPIPS(Learned Perceptual
   def __init__(
                                           Image Patch Similarity): 비교할 2
       self,
                                           개의 이미지를 각각 VGG Network
                                           에 넣고, 중간 layer의 feature값들을
       sigma_data: float = 0.5,
                                           각각 뽑아내서, 2개의 feature가 유사
       sigma max=80.0,
                                           한지를 측정하여 평가지표로 사용
       sigma min=0.002,

    from pig import LPIPS

       rho=7.0

    PyTorch Image Quality (PIQ)

       weight_schedule="karras",
       distillation=False,
       loss_norm="lpips",
   ):
       self.sigma data = sigma data
       self.sigma max = sigma max
       self.sigma min = sigma min
       self.weight schedule = weight schedule
       self.distillation = distillation
       self.loss norm = loss norm
       if loss_norm == "lpips":
           self.lpips loss = LPIPS(replace pooling=True, reduction="none")
       self.rho = rho
       self.num timesteps = 40
```

Based on https://github.com/crowsonkb/k-diffusion

<u>Elucidating the Design Space of Diffusion-Based Generative Models</u> (Karras et al., 2022)

```
def get snr(self, sigmas):
   return sigmas**-2
def get sigmas(self, sigmas):
   return sigmas
def get scalings(self, sigma):
 c skip = self.sigma data**2 / (sigma**2 + self.sigma data**2)
   c_out = sigma * self.sigma_data / (sigma**2 + self.sigma_data**2)
  c in = 1 / (sigma**2 + self.sigma data**2) ** 0.5
   return c skip, c out, c in
def get scalings for boundary condition(self, sigma):
  - c_skip = self.sigma_data**2 / (
       (sigma - self.sigma_min) ** 2 + self.sigma_data**2
   c out = (
       (sigma - self.sigma min)
       * self.sigma data
       / (sigma**2 + self.sigma data**2) ** 0.5
   c_in = 1 / (sigma**2 + self.sigma_data**2) ** 0.5
   return c skip, c out, c in
```

(2)-2 cm/karras_diffusion.py : class karrasDenoiser

```
def training losses(self, model, x start, sigmas, model kwargs=None, noise=None):
    if model kwargs is None:
        model kwargs = {}
    if noise is None:
        noise = th.randn like(x start)
                          ✓ append dims(x, target dims): Appends
    terms = \{\}
                            dimensions to the end of a tensor until it has
                            target dims dimensions.
    dims = x start.ndim
    x t = x start + noise * append dims(sigmas, dims)
    model output, denoised = self.denoise(model, x t, sigmas, **model kwargs)
    snrs = self.get snr(sigmas)
    weights = append dims(
        get weightings(self.weight schedule, snrs, self.sigma data), dims
    terms["xs mse"] = mean flat((denoised - x start) ** 2)
    terms["mse"] = mean flat(weights * (denoised - x start) ** 2)
    if "vb" in terms:
        terms["loss"] = terms["mse"] + terms["vb"]
    else:
        terms["loss"] = terms["mse"]
    return terms
```

```
def denoise(self, model, x_t, sigmas, **model_kwargs):
    import torch.distributed as dist

if not self.distillation:
        c_skip, c_out, c_in = [
            append_dims(x, x_t.ndim) for x in self.get_scalings(sigmas)
        ]
        else:
            c_skip, c_out, c_in = [
                append_dims(x, x_t.ndim)
                for x in self.get_scalings_for_boundary_condition(sigmas)
        ]
        rescaled_t = 1000 * 0.25 * th.log(sigmas + 1e-44)
        model_output = model(c_in * x_t, rescaled_t, **model_kwargs)
        denoised = c_out * model_output + c_skip * x_t
        return model_output, denoised
```

- TrainLoop Class: forward_backward-> training_losses
- CMTrainLoop Class: forward_backward -> consistency_losses, progdist_losses

(2)-2 cm/karras_diffusion.py : class karrasDenoiser

```
def progdist_losses(
def consistency losses(
   self,
                                   self,
                                   model,
   model,
                                   x_start,
   x_start,
                                   num_scales,
   num_scales,
                                   model_kwargs=None,
   model_kwargs=None,
                                   teacher_model=None,
   target_model=None,
                                   teacher_diffusion=None,
   teacher_model=None,
                                   noise=None,
   teacher_diffusion=None,
   noise=None,
                               ):
):
```

- ❖ CMTrainLoop Class에 사용
 - > forward backward -> consistency losses, progdist losses

```
Class UniformSampler(ScheduleSampler):

def __init__(self, diffusion):
    self.diffusion = diffusion
    self._weights = np.ones([diffusion.num_timesteps])

def weights(self):
    return self._weights

Class KarrasDenoiser
    num_timesteps = 40
```

(3) cm/resample.py

```
class ScheduleSampler(ScheduleSampler):

class ScheduleSampler(ABC): 추상클래스

"""

A distribution over timesteps in the diffusion process, intended to reduce variance of the objective.

By default, samplers perform unbiased importance sampling, in which the objective's mean is unchanged.

However, subclasses may override sample() to change how the resampled terms are reweighted, allowing for actual changes in the objective.

"""

@abstractmethod

def weights(self):

"""

Get a numpy array of weights, one per diffusion step.

The weights needn't be normalized, but must be positive.

"""
```

(4) cm/train util.py

```
TrainLoop(
                                                    class TrainLoop:
    model=model,
                                                        def __init__(
    diffusion=diffusion,
                                                            self,
    data=data,
    batch_size=batch_size,
                                                            model,
    microbatch=args.microbatch,
                                                            diffusion,
    lr=args.lr,
                                                            data,
    ema rate=args.ema rate,
                                                            batch size,
    log interval=args.log interval,
                                                            microbatch,
    save_interval=args.save_interval,
                                                            lr,
    resume checkpoint=args.resume checkpoint,
                                                            ema rate,
    use fp16=args.use fp16,
                                                            log interval,
    fp16_scale_growth=args.fp16_scale_growth,
                                                            save interval,
    schedule_sampler=schedule_sampler,
                                                            resume checkpoint,
    weight decay=args.weight decay,
                                                            use fp16=False,
    lr_anneal_steps=args.lr_anneal_steps,
                                                            fp16 scale growth=1e-3,
   un_loop()
                                                            schedule sampler=None,
                                                            weight decay=0.0,
                                                            lr anneal steps=0,
```

RAdam (Rectified Adam) : adaptive learning rate term의 분산을 rectify하여 학습의 안전성, 분산을 consistent하게 하는 rectification term을 구하고 이를 곱함

```
self.model = model
self.diffusion = diffusion
self.data = data
self.batch size = batch size
self.microbatch = microbatch if microbatch > 0 else batch size
self.lr = lr
self.ema rate = (
    [ema rate]
    if isinstance(ema rate, float)
    else [float(x) for x in ema_rate.split(",")]
self.log interval = log interval
self.save interval = save interval
self.resume checkpoint = resume checkpoint
self.use fp16 = use fp16
self.fp16_scale_growth = fp16_scale_growth
self.schedule sampler = schedule sampler or UniformSampler(diffusion)
self.weight decay = weight_decay
self.lr_anneal_steps = lr_anneal_steps
self.step = 0
self.resume step = 0
self.global batch = self.batch size * dist.get world size()
self. load and sync parameters()
self.mp trainer = MixedPrecisionTrainer( -
                                                       fp16 util.py class
   model=self.model,
   use_fp16=self.use_fp16,
   fp16 scale growth=fp16 scale growth,
                                  torch.optim.RAdam class
self.opt = RAdam(
    self.mp trainer.master params, lr=self.lr, weight decay=self.weight decay
```

(4) cm/train_util.py

```
if self.resume_step:
    self._load_optimizer_state()

# Model was resumed, either due to a restart or a checkpoint

# being specified at the command line.

self.ema_params = [
    self._load_ema_parameters(rate) for rate in self.ema_rate
]

else:
    self.ema_params = [
        copy.deepcopy(self.mp_trainer.master_params)
        for _ in range(len(self.ema_rate))
]
```

```
if th.cuda.is available():
    self.use_ddp = True
                                   torch.nn.parallel.distributed.DistributedDataParallel
    self.ddp_model = DDP(
        self.model,
        device_ids=[dist_util.dev()],
        output device=dist util.dev(),
       broadcast_buffers=False,
        bucket_cap_mb=128,
        find_unused_parameters=False,
else:
   if dist.get_world_size() > 1:
        logger.warn(
            "Distributed training requires CUDA. "
            "Gradients will not be synchronized properly!"
    self.use_ddp = False
    self.ddp_model = self.model
self.step = self.resume_step
```

(4) cm/train_util.py

```
def run loop(self):
    while not self.lr_anneal_steps or self.step < self.lr_anneal_steps:</pre>
        batch, cond = next(self.data)
        self.run step(batch, cond)
        if self.step % self.log_interval == 0:
            logger.dumpkvs()
        if self.step % self.save interval == 0:
            self.save()
            # Run for a finite amount of time in integration tests.
            if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
                return
    # Save the last checkpoint if it wasn't already saved.
    if (self.step - 1) % self.save interval != 0:
        self.save()
def run step(self, batch, cond):
    self.forward_backward(batch, cond) (1)
    took_step = self.mp_trainer.optimize(self.opt)
    if took step:
        self.step += 1
                            (2)
        self. update ema()
    self._anneal_lr()
                          (3)
    self.log_step()
```

```
(4) cm/train util.py
                                                                                                  self.mp_trainer → class MixedPrecisionTrainer
                                                                                                  self.schedule sampler
                                                                                                  self.diffusion
(1) class TrainLoop: method runloop → runstep → forward backward
def forward_backward(self, batch, cond):
    self.mp_trainer.zero_grad()
    for i in range(0, batch.shape[0], self.microbatch):
                                                            microbatch; default=-1
                                                                                                   if last_batch or not self.use_ddp:
        micro = batch[i : i + self.microbatch].to(dist_util.dev())
                                                                                                       losses = compute losses()
        micro cond = {
                                                                                                   else:
            k: v[i : i + self.microbatch].to(dist_util.dev())
                                                                                                       with self.ddp_model.no_sync():
            for k, v in cond.items()
                                                                                                           losses = compute losses()
        last batch = (i + self.microbatch) >= batch.shape[0]
                                                                                                   if isinstance(self.schedule_sampler, LossAwareSampler):
        t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())
                                                                                                       self.schedule_sampler.update_with_local_losses(
                                                                                                           t, losses["loss"].detach()
        compute_losses = functools.partial(
            self.diffusion.training_losses,
           _self.ddp model,
                                                  diffusion = KarrasDenoiser(
                                                                                                   loss = (losses["loss"] * weights).mean()
            micro,
                                                         sigma data=0.5,
                                                                                                   log loss dict(
                                                         sigma max=sigma max,
                                                                                                       self.diffusion, t, {k: v * weights for k, v in losses.items()}
                                                         sigma_min=sigma_min,
            model_kwargs=micro_cond,
                                                         distillation=distillation,
                                                         weight_schedule=weight_schedule,
                                                                                                   self.mp_trainer.backward(loss)
                                                    class KarrasDenoiser
                                                    def training_losses(self, model, x_start, sigmas, model_kwargs=None, noise=None):
```

64

- (4) cm/train_util.py
- (2) class TrainLoop: method runloop → runstep → update ema()

(3) class TrainLoop : method runloop → runstep → anneal lr()

```
def _anneal_lr(self):
    if not self.lr_anneal_steps:
        return
    frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
    lr = self.lr * (1 - frac_done)
    for param_group in self.opt.param_groups:
        param_group["lr"] = lr
```