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Score-Based Generative Modeling through SDE

Abstract (Paper)

» Creating noise from data is easy; creating data from noise is « This framework encapsulates previous approaches in score-based
generative modeling. generative modeling and diffusion probabilistic modeling, allowing for
. We present new sampling procedures and new modeling capabilities.
> A stochastic differential equation (SDE) that smoothly » Particularly introduce a predictor-corrector framework to correct
transforms a complex data distribution to a known prior errors in the evolution of the discretized reverse-time SDE.

distribution by slowly injecting noise, _ ]
» Also derive an equivalent neural ODE that samples from the

same distribution as the SDE, but additionally enables exact
likelihood computation, and improved sampling efficiency.

> A corresponding reverse-time SDE that transforms the prior
distribution back into the data distribution by slowly
removing the noise.

> Crucially, the reverse-time SDE depends only on the time- > Provide a new way to solve inverse problems with score-based
dependent gradient field (a.k.a., score) of the perturbed data models, as demonstrated with experiments on class-conditional
distribution. generation, image inpainting, and colorization.

* By leveraing the score-based generative modeling, we can « Record-breaking performance for unconditional image generation
accurately estimate these scores with neural networks, and use on CIFAR-10 with an Inception score of 9.89 and FID of 2.20, a

numerical SDE solvers to generate samples. competitive likelihood of 2.99 bits/dim,

» Demonstrate high fidelity generation of 1024x1024 images for the
first time from a score-based generative model.



Score-Based Generative Modeling through SDE

Overview

https://yang-song.net/blog/2021/score/

> We can learn score functions (gradients of log probability
density functions) on a large number of noise-perturbed data
distributions, then generate samples with Langevin-type
sampling.

» The resulting generative models, often called score-based

generative models, has several important advantages over existing
model families:

* GAN-level sample quality without adversarial training
* Flexible model architectures
+ Exact log-likelihood computation

* Inverse problem solving without re-training models



Score-Based Generative Modeling through SDE

Introduction

+ Existing generative modeling techniques can largely be grouped into two categories based on
how they represent probability distributions.

@ Likelihood-based models, which directly learn the distribution’s @ Implicit generative models [10], where the probability

probability density (or mass) function via (approximate) distribution is implicitly represented by a model of its
maximum likelihood. Typical likelihood-based models include sampling process. The most prominent example is generative
autoregressive models [1,2,3], normalizing flow models [4,5], adversarial networks (GANs) [11], where new samples from the
energy-based models (EBMs) [6,7], and variational auto- data distribution are synthesized by transforming a random
encoders (VAEs) [8,9]. Gaussian vector with a neural network.
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Bayesian networks, Markov random fields (MRF), autoregressive models, and GAN is an example of implicit models. It implicitly represents a distribution
normalizing flow models are all examples of likelihood-based models. All these over all objects that can be produced by the generator network.

models represent the probability density or mass function of a distribution.



Score-Based Generative Modeling through SDE

Introduction

» Significant limitations.
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* Require 1) strong restrictions on the model architecture to ensure a
tractable normalizing constant for likelihood computation,
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» or 2) must rely on surrogate objectives to approximate maximum \
likelihood training. \
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= Implicit generative models

» Often require adversarial training, which is notoriously unstable [12] and
can lead to mode collapse [13].
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» Score-based model
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* Another way to represent probability distributions that may circumvent several
of these limitations.
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* The key idea is to model the gradient of the log probability density
function, a quantity often known as the (Stein) score function [14,15].
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» Such score-based models are not required to have a tractable normalizing Score function (the vector field) and density
constant, and can be directly learned by score matching [16,17]. function (contours) of a mixture of two Gaussians.



Score-Based Generative Modeling through SDE

Introduction

» Score-based model

» Achieve State-of-the-art performance on many downstream tasks
and applications.

v These tasks include, among others, image generation
[18,19,20,21,22,23] (Yes, better than GANs!), audio synthesis
[24,25,26], shape generation [27], and music generation [28].

* Have connections to normalizing flow models, therefore allowing
exact likelihood computation and representation learning.

* Modeling and estimating scores facilitates inverse problem
solving, with applications such as image inpainting [18,21], image
colorization [21], compressive sensing, and medical image
reconstruction (e.g., CT, MRI)[29].

1024x1024 samples generated from score-based models [21]



Score-Based Generative Modeling through SDE

Score function, score-based models, and score matching

» Suppose given a dataset {x4,x,, ..., Xy}, Wwhere each point is drawn independently from an underlying data distribution p(x).

» Given this dataset, the goal of generative modeling is to fit a model to the data distribution such that we can synthesize
new data points at will by sampling from the distribution.

» Build such a generative model,

O First need a way to represent a probability distribution. « We can train py (x) by maximizing the log-likelihood of the data
» One such way, as in likelihood-based models, is to directly model N
the probability density function or probability mass function. max Z log po(x;).  (2)
i=1
+ Let fp(x) € R be a real-valued function parameterized by a
learnable parameter 6. * It requires py(x) to be a normalized probability density function.
This is undesirable because in order to compute pg(x), we must
» Define a pdf via e—fo® evaluate the normalizing constant Z, —a typically intractable
pe(X) = Z (1) quantity for any general fy (x).
9
» Thus to make maximum likelihood training feasible, likelihood-based
v’ Zg : A normalizing constant dependent on 8, such that models must either restrict their model architectures (e.g., causal
[pe(x)dx =1 convolutions in autoregressive models, invertible networks in

normalizing flow models) to make Z, tractable, or approximate the
normalizing constant (e.g., variational inference in VAEs, or MCMC
sampling used in contrastive divergence[30]) which may be
computationally expensive. 8

v fo(x) is often called an unnormalized probabilistic model, or
energy-based model [7].



Score-Based Generative Modeling through SDE

p.df.
. . 0.35F
Score function, score-based models, and score matching 0.30k
0.25¢
» Build such a generative model, 0.20F
O By modeling the score function instead of the density function, we -
can sidestep the difficulty of intractable normalizing constants. 0.10F
0.05¢
* The score function of a distribution p(x) is defined : A : Loy
-10 -5 0 5 10

Vilogp(x)
x 08 Parameterizing probability density functions. No matter how you

« A model for the score function is called a score-based model [18], sy (x). change the model family and parameters, it has to be normalized

(area under the curve must integrate to one).
» The score-based model is learned such that s, (x) = V,logp(x), and can

be parameterized without worrying about the normalizing constant. ?89"9
» For example, we can easily parameterize a score-based model with the '
energy-based model defined in equation (1) 5t

sp(x) = Vxlogpo(x) = —Vfo(x) — Vxlog Zyg = — Vi fo(x). (3)

=0

% sg(x) is independent of the normalizing constant !.

== This significantly expands the family of models that we can -10t
tractably use, since we don’t need any special architectures to Parameterizing score functions. No need to worry about
make the normalizing constant tractable. normalization. 9



Score-Based Generative Modeling through SDE

Score function, score-based models, and score matching

» We can train score-based models by minimizing the Fisher
divergence between the model and the data distributions

Epx)[[|Vx log p(x) — so(x)[3] ~ (5)

* Intuitivley, compares the squared [, distance between the ground-
truth data score and the score-based model.

s Fisher divergence between two distributions p and q, defined as

Eyx[[|Vxlogp(x) — Vxlogg(x)|3]. (4)

» Score matching

* It requires access to the unknown data score V,log p(x). There
exists a family of methods called score matching [16,17,31] that
minimize the Fisher divergence without knowledge of the
ground-truth data score.

* We can train the score-based model by minimizing a score
matching objective, without requiring adversarial
optimization.

» Score matching objectives can directly be estimated on a
dataset and optimized with stochastic gradient descent,
analogous to the log-likelihood objective for training likelihood-
based models (with known normalizing constants).

— Gives us a considerable amount of modeling flexibility.

» Does not require sg(x) to be an actual score function of any
normalized distribution—it simply compares the [, distance with
Vlogp(x) and sy (x) no additional assumptions on the form of

sp(X).

* Only requirement on the score-based model is that it should
be a vector-valued function with the same input and output
dimensionality.

10



Score-Based Generative Modeling through SDE

Langevin dynamics
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» Once we have trained a score-based model sy (x) = V,logp(x), we
can use an iterative procedure called Langevin dynamics [32,33] to
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* When e — 0 and K = o, x; obtained from the procedure in (6)
converges to a sample from p(x) under some regularity conditions. Using Langevin dynamics to sample from a mixture of two Gaussians.

* In practice, the error is negligible when ¢ is sufficiently small and

K is sufficiently large. » Langevin dynamics accesses p(x) only through V,logp(x). Since

sg(x) =~ Vilogp(x), we can produce samples from our score-based
model sg(x) by plugging it into equation (6).
11



Score-Based Generative Modeling through SDE

Naive score-based generative modeling and its pitfalls

» How to train a score-based model with score matching, and then
produce samples via Langevin dynamics

» This naive approach has had limited success in practice
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Data samples Scores New samples
ii.d.
{Xl,Xz,"',XN} ~ p(X) Se(x)%vxlogp(x)

Score-based generative modeling with score matching + Langevin dynamics.
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Score-Based Generative Modeling through SDE

Naive score-based generative modeling and its pitfalls

» The key challenge

: Data scores Estimated scores
. . . . . Data density
» The estimated score functions are inaccurate in low density

regions, where few data points are available for computing the
score matching objective.

* This is expected as score matching minimizes the Fisher
divergence

Ep(x) ([ Vx log p(x) — so(x)|13] = f P(x)||Vx log p(x) — so(x)||3dx.

» Since the [, differences between the true data score function and Estimated scores are only accurate in high density regions.
score-based model are weighted by p(x), they are largely ignored
in low density regions where p(x) is small.

[Note That] « Therefore, having an inaccurate score-based model will

* When sampling with Langevin dynamics, our initial sample is derail Langevin dynamics from the very beginning of the
highly likely in low density regions when data reside in a high procedure, preventing it from generating high quality
dimensional space. samples that are representative of the data.

13



Score-Based Generative Modeling through SDE

Score-based generative modeling with multiple noise perturbations

» How can we bypass the difficulty of accurate score estimation

in regions of low data density? Perturbed density Perturbed scores Estimated scores
' NN NN
+ Our solution is to perturb data points with noise and train N S L i
. . . S e I | L e I |
score-based models on the noisy data points instead. DNNS===mmm e NNS==——===oe e
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of two Gaussians perturbed by additional Gaussian noise. Estimated scores are accurate everywhere for the noise-perturbed

data distribution due to reduced low data density regions.
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Score-Based Generative Modeling through SDE

Score-based generative modeling with multiple noise perturbations

» How do we choose an appropriate noise scale for the > Multiple scales of noise perturbations simultaneously
perturbation process?

+ Suppose we always perturb the data with isotropic Gaussian noise,

* Larger noise : Obviously cover more low density regions for and let there be a total of L increasing standard deviations a; <
better score estimation, but it over-corrupts the data and alters it o, < < 0.

significantly from the original distribution.

« First, perturb the data distribution p(x) with each of the Gaussian
» Smaller noise : Causes less corruption of the original data noise N(0,071), i = 1,2, ..., L to obtain a noise-perturbed

distribution, but does not cover the low density regions. distribution

To achieve the best of both worlds Po, x) = f p(y) N(x; y, Giz I) dy

* Note that we can easily draw samples from p,, (x) by sampling
x ~p(x) and computing x + g,z with z ~N (0, I).

15



Score-Based Generative Modeling through SDE

Score-based generative modeling with multiple noise perturbations

> Multiple scales of noise perturbations simultaneously

* Next, estimate the score function of each noise-perturbed
distribution, V,log p,,(x), by training a Noise Conditional Score-
Based Model s, (x,i) (also called a Noise Conditional Score
Network, or NCSN [18,19,21], when parameterized with a neural
network) with score matching, such that sq(x,i) = V,log p,,(x) for
alli=1,2,...,L.

We apply multiple scales of Gaussian noise to perturb
the data distribution (first row), and jointly estimate the SESEoOE 4 2] ')
score functions for all of them (second row). : 1T : b - TEMEEE

77
A

Perturbing an image with multiple scales of Gaussian noise. 16



Score-Based Generative Modeling through SDE

Score-based generative modeling with multiple noise perturbations

» Noise-conditional score-based model sq (X, i) - Training objective

» The training objective for sq(x,i) Is a weighted sum of Fisher * After training sg(x, i), we can produce samples from it by running
divergences for all noise scales. Langevin dynamics fori = L,L — 1, ...,1 in sequence.
L » This method is called annealed Langevin dynamics (defined by
D AGDE,, ([l Vxlogpo, (x) — sa(x,9) (13,  (7) Algorithm 1 in [18], and improved by [19, 34]), since the noise
i=1 scale g; decreases (anneals) gradually over time
* A(i) € Ry, Is a positive weighting function, often chosen to o0
be (i) = o? (‘iZIZZIZ < ek . - A
» The objective (7) can be optimized with score matching, § } BT e r: }
. . .y \llj""’”"""\l - .
exactly as in optimizing the naive (unconditional) score- R NS AR - — .
based model sg(x) RIS R A S T T SRS S ‘
P R S R DR R RN R et
MRS B N TR .
--'-“frf"’}:Q ““““ ,,,..'f}}:. :.‘....'...‘.:.‘.‘.1.'-€:‘1-{.\{
B g e . iR T T g e W
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Annealed Langevin dynamics combine a sequence of Langevin chains
with gradually decreasing noise scales.
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Score-Based Generative Modeling through SDE

Score-based generative modeling with multiple noise perturbations

Annealed Langevin dynamics for the Noise Conditional Score Network (NCSN) model (from ref. [18]) trained on CelebA (left)
and CIFAR-10 (right). We can start from unstructured noise, modify images according to the scores, and generate nice samples.
The method achieved state-of-the-art Inception score on CIFAR-10 at its time.

18



Score-Based Generative Modeling through SDE

Score-based generative modeling with multiple noise perturbations

» Some practical recommendations for tuning score-based generative » With such best practices, we are able to generate high quality image
models with multiple noise scales: samples with comparable quality to GANs on various datasets

* Choose g; < g, < -+ < g, as a geometric progression, with ¢;
being sufficiently small and o, comparable to the maximum
pairwise distance between all training data points [19]. L is
typically on the order of hundreds or thousands.

» Parameterize the score-based model sy (%, i) with U-Net skip
connections [18, 20]

» Apply exponential moving average on the weights of the score-
based model when used at test time [19, 20].

Samples from the NCSNv2 [19] model. From left to right: FFHQ 256x256,
LSUN bedroom 128x128, LSUN tower 128x128, LSUN church_outdoor
96x96, and CelebA 64x64.

19



Score-based generative modeling with stochastic differential equations (SDEs)

» Adding multiple noise scales is critical to the success of score-

based generative models.

» By generalizing the number of noise scales to infinity [21], we
obtain not only higher quality samples, but also, among others,
exact log-likelihood computation, and controllable generation

for inverse problem solving.

Link

Description

https://colab.research.google.com/drive/1SeXMplLhkJPjXUaesv
zEhc3Ke6ZI_zxJ?usp=sharing

Tutorial of score-based generative modeling with SDEs in JAX + FLAX

https://colab.research.google.com/drive/1dRR_0OgNRmfLtPavX2
APzUggBuXyjWW55?usp=sharing

Load our pretrained checkpoints and play with sampling, likelihood com
putation, and controllable synthesis (JAX + FLAX)

https://colab.research.google.com/drive/120kYYBOVa1i0TD85R
JIEKFjaWDxSFUx3?usp=sharing

Tutorial of score-based generative modeling with SDEs in PyTorch

https://colab.research.google.com/drive/17ITrPLTt_OEDXa4hkb
HmbAFQEkpRDZnh?usp=sharing

Load our pretrained checkpoints and play with sampling, likelihood com
putation, and controllable synthesis (PyTorch)

Code in JAX

Score SDE codebase in JAX + FLAX

Code in PyTorch

Score SDE codebase in PyTorch

20



Score-based generative modeling with stochastic differential equations (SDEs)

Perturbing data with an SDE

» The number of noise scales to infinity

: bae g‘ B —— Stochastic process
. ) J P
* When the number of noise scales approaches R 15 -

infinity, we essentially perturb the data
distribution with continuously growing levels
of noise.

* In this case, the noise perturbation procedure is a
continuous-time stochastic process

Perturbing data to noise with a continuous-time stochastic process.

» How can we represent a stochastic process in a concise way?

» Many stochastic processes (diffusion processes in particular) are
solutions of stochastic differential equations (SDEs).

21



Score-based generative modeling with stochastic differential equations (SDEs)

Perturbing data with an SDE

» In general, an SDE possesses the following form:
dx = f(x, t)dt + g(t)dw (8)

- f(-,t) : RY - R4, a vector-valued function called the drift coefficient
- g(t) € R% : a real-valued function called the diffusion coefficient
- w : Standard Brownian motion

- dw: Can be viewed as infinitesimal white noise.

* The solution of a SDE is a continuous collection of random
variables {x(t)}¢efo,71-

* These random variables trace stochastic trajectories as the time
index t grows from the start time 0 to the end time T.

Let p,(x) denote the (marginal) probability density function of x(t).

Here t € [0,T] is analogous to i = 1,2, ..., L when we had a finite
number of noise scales, and p,(x) is analogous to p,, (x).

Clearly, py(x) = p(x) is the data distribution since no perturbation
is applied to dataatt = 0.

After perturbing p(x) with the stochastic process for a sufficiently
long time T, pr(x) becomes close to a tractable noise distribution
m(x), called a prior distribution.

We note that pr(x) is analogous to p,, (x) in the case of finite

noise scales, which corresponds to applying the largest noise
perturbation ¢; to the data.

22



Score-based generative modeling with stochastic differential equations (SDEs)

Perturbing data with an SDE ; Forward SDE

» In general, an SDE possesses the following form:

dx = f(x, t)dt + g(t)dw (8)
* The SDE is hand designed, similarly to how we hand-designed
0, < 0, < -+ < g, in the case of finite noise scales.

* There are numerous ways to add noise perturbations, and the
choice of SDEs is not unique.

* For example, the following SDE perturbs data with a Gaussian
noise of mean zero and exponentially growing variance

dx = etdw (9)

v which is analogous to perturbing data with
N(0,0%21),N(0,021),...,N(0,02]) when o, < 6, < - < g, is a
geometric progression.

» Therefore, the SDE should be viewed as part of the model, much
like {01, 05, ..., 01 }.

* In[21], we provide three SDEs that generally work well for images:
the Variance Exploding SDE (VE SDE), the Variance
Preserving SDE (VP SDE), and the sub-VP SDE.

23



Score-based generative modeling with stochastic differential equations (SDEs)

Reversing the SDE for sample generation; Reverse SDE

» With a finite number of noise scales, we can P A AT, TR
generate samples by reversing the perturbation %
process with annealed Langevin dynamics, i.e., ’ %
sequentially sampling from each noise-perturbed
distribution using Langevin dynamics.

» For infinite noise scales, we can analogously reverse
the perturbation process for sample generation by
using the reverse SDE.

» Importantly, any SDE has a corresponding reverse
SDE [35], whose closed form is given by Generate data from noise by reversing the perturbation procedure.

dx = [f(x, 1) — g*(t) Vilogpe (x)]dt + g(t)dw (10)

* dt : a negative infinitesimal time step, since the SDE (10) needs
to be solved backwards in time (from ¢t = T to t = 0).

* In order to compute the reverse SDE, we need to estimate
V,log p;(x), which is exactly the score function of p,(x).



Score-based generative modeling with stochastic differential equations (SDEs)

Reversing the SDE for sample generation; Reverse SDE

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw

score function

x = [f(x,t) — klogpt ]]dt+g t)dw

Reverse SDE (noise — data)

Solving a reverse SDE yields a score-based generative model. Transforming data to a simple
noise distribution can be accomplished with an SDE. It can be reversed to generate samples from
noise if we know the score of the distribution at each intermediate time step.



Score-based generative modeling with stochastic differential equations (SDEs)

Estimating the reverse SDE with score-based models and score matching

» Requirement for solving the Reverse SDE » Training objective of score-based model
* Solving the reverse SDE requires us to know the terminal  Our training objective for sy (x,t) is a continuous weighted
distribution p;(x) (close to the prior distribution (x) which is fully combination of Fisher divergences, given by.

tractable), and the score function V,logp;(x).

E E, 0 [A(#)||Vx log pe(x) — sa(x, t)||2], 11
* In order to estimate V,log p;(x), we train a Time-Dependent Score- t€U(0:1)Ep ) A(®)[Vx log pe(x) o, t)ll2 (n

Based Model ,t), such that ,t) = Vil : , e L
So (%, £) ss(% ) xlog p.(x) v U(0,T) : Uniform distribution over the time interval [0, T]

v This is analogous to the noise-conditional score-based model
sg(x,1) used for finite noise scales, trained such that sy (x,1) =
Vilogps, (%).

v 1:R - Ry, : A positive weighting function

v We use A(t)  1/E[||Vlog p(x(t)[x(0))]|/] to balance the
magnitude of different score matching losses across time.

» Our weighted combination of Fisher divergences can be efficiently
optimized with score matching methods, such as denoising score
matching [17] and sliced score matching [31]

26



Score-based generative modeling with stochastic differential equations (SDEs)

Estimating the reverse SDE with score-based models and score matching

» Expression of the reverse SDE » KL Divergence
» Once our score-based model sy (%, t) is trained to optimality, we can « When A(t) = g?(t), we have an important connection between our
plug it into the expression of the reverse SDE in (10) to obtain an weighted combination of Fisher divergences and the KL divergence
estimated reverse SDE. from p, to pg under some regularity conditions.
dx = [£0x,6) — g7 ()55 (%, O)dt + g(D)dw (12 KL(po) Il ps () \7 (13)

T
<—E E, [A(2)||V4lo X) — sg(x,t)]|%] + KL
- We can start with x(T)~7, and solve the above reverse SDE to o teu(on) pe0 [A(®)[IVxlog pe (%) — s (x, 0)17] (pr Il )

obtain a sample x(0).

Training objective for sy (x,t) is a

« Let us denote the distribution of x(0) obtained in such way as py. continuous weighted combination of Fisher
When the score-based model sy (x, t) is well-trained, we have py =~ divergences
Po, in which case x(0) is an approximate sample from the data
distribution p,.

* Due to this special connection to the KL divergence and the
equivalence between minimizing KL divergences and
maximizing likelihood for model training, we call A(t) = g2(t)
the likelihood weighting function.

» Using this likelihood weighting function, we can train score-based
generative models to achieve very high likelihoods, comparable or

even superior to state-of-the-art autoregressive models
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How to solve the reverse SDE

» Expression of the reverse SDE

By solving the estimated reverse SDE with numerical SDE
solvers, we can simulate the reverse stochastic process for
sample generation.

The simplest numerical SDE solver is the Euler-Maruyama method.

- Discretizes the SDE using finite time steps and small Gaussian
noise.

- Specifically, it chooses a small negative time step At = 0,
initializes t « T.

- lterates the following procedure until t = 0:
Ax < [f(x, ) — g*(D)se (X, D)]AL + g(t)/|At|zZ,

X « X + Ax t—t+ At

Here z, < N(0,I)

The Euler-Maruyama method is qualitatively similar to Langevin
dynamics—both update x by following score functions perturbed
with Gaussian noise.

» Other numerical SDE solvers can be directly employed to solve the

reverse SDE for sample generation;
v Milstein method, and stochastic Runge-Kutta methods.

v Areverse diffusion solver [21] similar to Euler-Maruyama, but
more tailored for solving reverse-time SDEs.

v Adaptive step-size SDE solvers that can generate samples
faster with better quality.
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How to solve the reverse SDE

» Special properties of our reverse SDE » Propose Predictor-Corrector samplers.
» Two special properties of our reverse SDE that allow for even more » The predictor can be any numerical SDE solver that predicts
flexible sampling methods: X(t + At)~p;a:(X) from an existing sample x(t) ~p; (x).
(@M We have an estimate of V,log p,(x) via our time-dependent » The corrector can be any MCMC procedure that solely relies on the
score-based model sy (x, t). score function, such as Langevin dynamics and Hamiltonian Monte
Carlo.

@ We only care about sampling from each marginal distribution
p:(x). Samples obtained at different time steps can have _
arbitrary correlations and do not have to form a particular * At each step of the Predictor-Corrector sampler,

' led f h DE.
trajectory sampled from the reverse S - First, we use the predictor to choose a proper step size At < 0

. As a consequence of these two properties, we can apply MCMC and then predict x(t + At) based on the current sample x(t).

approaches to fine-tune the trajectories obtained from - Next, we run several corrector steps to improve the sample

numerical SDE solvers. x(t + At) according to our score-based model s, (%, t + At), SO
that x(t + At) becomes a higher-quality sample from p;; ¢ (X).
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How to solve the reverse SDE

» Propose Predictor-Corrector samplers.

» With Predictor-Corrector methods and better architectures of score-
based models, we can achieve state-of-the-art sample quality on
CIFAR-10 (measured in FID [38] and Inception scores [12])

Method FID | Inception score 1
StyleGAN2 + ADA [59] 2.92 0.83
Ours [27] 2.20 9.89

dataset. (E2 132 25% F4)

» The sampling methods are also scalable for extremely high
dimensional data. For example, it can successfully generate high
fidelity images of resolution 1024 x1024




Score-based generative modeling with stochastic differential equations (SDEs)

Probability flow ODE

» Probability flow ODE (Ordinary differential equations) » Trajectories of both SDEs and probability flow ODEs.

» Despite capable of generating high-quality samples, samplers » Although ODE trajectories are noticeably smoother than SDE
based on Langevin MCMC and SDE solvers do not provide a way trajectories, they convert the same data distribution to the same
to compute the exact log-likelihood of score-based generative prior distribution and vice versa, sharing the same set of
models. marginal distributions {p;(x)}:[01)-

* Introduce a sampler based on ordinary differential equations « In other words, trajectories obtained by solving the probability flow
(ODEs) that allow for exact likelihood computation. ODE have the same marginal distributions as the SDE trajectories.

+ It is possible to convert any SDE into an ordinary differential e CHZ TH|O|X|off 12

equation (ODE) without changing its marginal distributions

{p: (X }eefo,r)-

- Thus by solving this ODE, we can sample from the same
distributions as the reverse SDE.

» The corresponding ODE of an SDE is named probability flow
ODE [21], given by

dx = [f(x,t) —%gz(t) Vilogp:(x) | dt (14)
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Probability flow ODE

Data Forward SDE Prior Reverse SDE Data

z(0) dz = f(z,t)dt + g(t)dw —)@— dz = [f(z,t) — G ()Y, log py ()] dt + g(t)dw

We can map data to a noise distribution (the prior) with an SDE, and reverse this SDE for generative modeling.

We can also reverse the associated probability flow ODE, which yields a deterministic process that samples from the same
distribution as the SDE.

Both the reverse-time SDE and probability flow ODE can be obtained by estimating score functions.
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Probability flow ODE

» Unique advantages of Probability flow ODE formulation

- When V,logp,(x) is replaced by its approximation sg (x, t), the . Althougr_\ ODE trajectories are noticeably s'mo_othe_r than SDE
probability flow ODE becomes a special case of a neural ODE [40]. trajectories, they convert the same data distribution to the same
prior distribution and vice versa, sharing the same set of
* In particular, it is an example of continuous normalizing flows [41], marginal distributions {p;(X)}scjo1)-

since the probability flow ODE converts a data distribution p,(x)
to a prior noise distribution p(x) (since it shares the same
marginal distributions as the SDE) and is fully invertible.

* Our model achieves SOTA log-likelihoods on uniformly
dequantized CIFAR-10 images [21], even without maximum

« As such, the probability flow ODE inherits all properties of neural likelihood training.
ODEs or continuous normalizing flows, including exact log-
likelihood computation. Method Negative log-likelihood (bits/dim) |
RealNVP 3.49
» Specifically, we can leverage the instantaneous change-of-variable =
formula (Theorem 1 in [40], Equation (4) in [41]) to compute the iResNet 3.45
unknown data density p, from the known prior density p with Glow 2.35
numerical ODE solvers.
FFJORD 3.40
Flow++ 3.29
Ours 2.99
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Controllable generation for inverse problem solving

» Score-based generative models are particularly suitable for solving
inverse problems.

> Inverse problems are same as Bayesian inference problems

* Letxandy be two random variables, and suppose we know the « Through score matching, we can train a model to estimate the
forward process of generating y from x, represented by the score function of the unconditional data distribution, i.e.,sg (x) ~
transition probability distribution p(y|x). V, logp(x).

* The inverse problem is to compute p(x|y). + This will allow us to easily compute the posterior score function

V. logp(x|y) from the known forward process p(y|x) via equation

* From Bayes’ rule (15) , and sample from it with Langevin-type sampling [21].

_p®plx) _ pXpiIx)
p(y)  [pp(ylxdx

» This expression can be greatly simplified by taking gradients with
respect to x on both sides, leading to the following Bayes’ rule for
score functions:

p(x]y)

Vxlogp(x|y) = Vxlogp(x) + Vxlog p(y[x) (15)
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Controllable generation for inverse problem solving

» Some examples on solving inverse problems for computer vision.

class: bird class: deer

Class-conditional generation with an unconditional time-dependent Image inpainting with a time-dependent score-based model trained on
score-based model, and a pre-trained noise-conditional image LSUN bedroom. The leftmost column is ground-truth. The second column
classifier on CIFAR-10. shows masked images (y in our framework). The rest columns show different

inpainted images, generated by solving the conditional reverse-time SDE.
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Controllable generation for inverse problem solving

» Some examples on solving inverse problems for computer vision.

Image colorization with a time-dependent score-based model trained on We can even colorize gray-scale portrays of famous people in history
LSUN church_outdoor and bedroom. The leftmost column is ground-truth. (Abraham Lincoln) with a time-dependent score-based model trained on
The second column shows gray-scale images (y in our framework). The FFHQ. The image resolution is 1024 x 1024.

rest columns show different colorizedimages, generated by solving the

conditional reverse-time SDE.
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Connection to diffusion models and others
» 3 crucial improvements that can lead to extremely good samples:
1) Perturbing data with multiple scales of noise, and training

score-based models for each noise scale;

2) Using a U-Net architecture (we used RefineNet since itis a
modern version of U-Nets) for the score-based model,;

3) Applying Langevin MCMC to each noise scale and chaining
them together.

» Obtain the state-of-the-art Inception Score on CIFAR-10 in [18]
(even better than the best GANs!), and generate high-fidelity image
samples of resolution up to 256 x 256 in [19]

» The idea of perturbing data with multiple scales of noise
» Score-based generative models

* Previously used : Simulated annealing, Annealed importance
sampling [43], Diffusion probabilistic models [44], Infusion training
[45], Variational walkback [46] for generative stochastic networks
[471].

v Score-based generative modeling : Trained by score matching
and sampled by Langevin dynamics

v Diffusion probabilistic modeling : Trained by the evidence lower
bound (ELBO) and sampled with a learned decoder.
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Connection to diffusion models and others

» Deepr connection between score-based generative modeling » Further investigated the relationship between SGM and DPM
(SGM) and diffusion probabilistic modeling (DPM) By Jonathan (ICLR2021)

Ho and colleagues [20] in 2020
« Sampling method of DPM can be integrated with annealed

« ELBO used for training DPM is essentially equivalent to the Langevin dynamics of SGM to create a unified and more
weighted combination of score matching objectives used in powerful sampler (the Predictor-Corrector sampler).
SGM.
* By generalizing the number of noise scales to infinity, SGM
» By parameterizing the decoder as a sequence of score-based and DPM can both be viewed as discretizations to stochastic
models with a U-Net architecture, DPM can also generate high differential equations determined by score functions.

quality image samples comparable or superior to GANSs.
«+ This work bridges both SGM and DPM into a unified framework.
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Connection to diffusion models and others

» The perspective of score matching and score-based models
allows one to calculate log-likelihoods exactly, solve inverse
problems naturally, and is directly connected to energy-based
models, Schrodinger bridges and optimal transport [48].

» The perspective of diffusion models is naturally connected to
VAEs, lossy compression, and can be directly incorporated with
variational probabilistic inference.

» Alternative perspective of diffusion models; Lilian Weng blog
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

» Call as Generative Diffusion Processes (Proposed to Deepmind
researcher)

» Despite this deep connection between score-based generative
models and diffusion models, it is hard to come up with an
umbrella term for the model family that they both belong to.

» For a list of works that have been influenced by score-based
generative modeling, researchers at the University of Oxford

https://scorebasedgenerativemodeling.github.io/
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Remarks

» Two maijor challenges of score-based generative models

1) Low Sampling speed since it involves a large number of 2) Inconvenient to work with discrete data distributions since
Langevin-type iterations scores are only defined on continuous distributions.
» Can be partially solved by using numerical ODE solvers for the + Can be addressed by learning an autoencoder on discrete data
probability flow ODE with lower precision (a similar method, and performing score-based generative modeling on its
denoising diffusion implicit modeling [49]). continuous latent space [28, 51]

* Possible to learn a direct mapping from the latent space of
probability flow ODEs to the image space, as shown in [50].

+ All such methods to date result in worse sample quality.
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