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High-Resoluton Image Synthesis with Latent Diffusion Model

Abstract

» Diffusion Models (DMs) : achieve state-of-the-art synthesis results on image data and
beyond

+ Decompose the image formation process into a sequential application of denoising
autoencoders,.

» Control the image generation process without retraining.

+ [Cons] However, since these models typically operate directly in pixel space,
optimization of powerful DMs often consumes hundreds of GPU days and inference is
expensive due to sequential evaluations.

» Latent diffusion models (LDMs)

[Pros]

DM do not exhibit mode-collapse and training
instabilities as GANs, being likelihood-based
models.

Model highly complex distribution of natural
images without involving billions of
parameters as in AR models, by heavily
exploiting parameter sharing.

» To enable DM training on limited computational resources while retaining their quality and flexibility,

* Apply them in the latent space of powerful pretrained autoencoders.

» By introducing cross-attention layers into the model architecture, turn diffusion models into powerful and flexible
generators for general conditioning inputs such as text or bounding boxes and high-resolution synthesis becomes

possible in a convolutional manner.

» Achieve a new state of the art for image inpainting and highly competitive performance on various tasks, including
unconditional image generation, semantic scene synthesis, and super-resolution, while significantly reducing

computational requirements compared to pixel-based DMs.
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»> Democratizing High-Resolution Image Synthesis

Diffusion Model

+ Still computationally demanding, since training and evaluating such a model requires
repeated function evaluations (and gradient computations) in the high-dimensional
space of RGB images.

+  Example

v" Training the most powerful DMs often takes hundreds of GPU days (e.g. 150-1000
V100 days in [15]) and repeated evaluations on a noisy version of the input space render

v Inference expensive so that producing 50k samples takes approximately 5 days [15]
on a single A100 GPU

» Two consequences for the research community

1) Firstly, training such a model requires massive computational resources only available to
a small fraction of the field, and leaves a huge carbon footprint [65, 86].

2) Secondly, evaluating an already trained model is also expensive in time and memory,
since the same model architecture must run sequentially for a large number of steps (e.g.
25 - 1000 steps in [15]).
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> Departure to Latent Space
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Figure 2. lllustrating perceptual and semantic compression: Most bits of a
digital image correspond to imperceptible details.

* While DMs allow to suppress this semantically meaningless information by
minimizing the responsible loss term, gradients (during training) and the
neural network backbone (training and inference) still need to be
evaluated on all pixels, leading to superfluous computations and
unnecessarily expensive optimization and inference.

+ We propose latent diffusion models (LDMs) as an effective generative
model and a separate mild compression stage that only eliminates
imperceptible details. Data and images from [30].

Remove high-frequency details but  Aim to first find a perceptually equivalent, but
«— still learns little semantic variation computationally more suitable space, in which we will

train diffusion models for high-resolution image synthesis

* Two distinct phases for training

v" Train an autoencoder which provides a lower-dimensional (and
thereby efficient) representational space which is perceptually
equivalent to the data space.

v" Train DMs in the learned latent space, which exhibits better
scaling properties with respect to the spatial dimensionality

* Notable advantage

v" Need to train the universe autoencoding stage only once and
reuse it for multiple DM training

v' Enable a large number of diffusion models for various image-to-
image and test-to-image tasks
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Contributions

Scales more graceful to higher dimensional data
and can thus (a) work on a compression level which
provides more faithful and detailed reconstructions
than previous work (see Fig. 1) and (b) can be
efficiently applied to high-resolution synthesis of
megapixel images

Competitive performance on multiple tasks
(unconditional image synthesis, inpainting, stochastic
super-resolution) and datasets while significantly
lowering computational costs.

Does not require a delicate weighting of
reconstruction and generative abilities. This
ensures extremely faithful reconstructions and
requires very little regularization of the latent space

Can be applied in a convolutional fashion and render
large, consistent images of ~ 10242 px

Design a general-purpose conditioning mechanism
based on cross-attention, enabling multi-modal
training. We use it to train class-conditional, text-to-
image and layout-to-image models.

ours (f =4) DALL-E (f =¥8) VQGAN (f = 16)
Input PSNR: 27.4 R-FID: 0.58 PSNR: 22.8 R-FID: 32.01 PSNR: 19.9 R-FID: 4.98
e ST . T

Figure 1. Boosting the upper bound on achievable quality with less aggressive
downsampling. Since diffusion models offer excellent inductive biases for spatial data,

we do not need the heavy spatial downsampling of related generative models in latent
space, but can still greatly reduce the dimensionality of the data via suitable
autoencoding models, see Sec. 3. Images are from the DIV2K [1] validation set,
evaluated at 5122 px. We denote the spatial downsampling factor by f. Reconstruction
FIDs [29] and PSNR are calculated on ImageNet-val. [12]; see also Tab. 8.
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2. Related Work

> Generative Models for Image Synthesis

» Explicit Model - Likelihood base Model : VAE(Variational autoencoders), DM(Diffusion
Probabilistic Models) (SOTA in density estimation as well as sample quality) — A= ME0|
CH3K Likelihood Function2 Z|Li5}5t= HiAl

* Flow based ARM (Autoregressive models)
« Implicit Model : GAN(Generative Adversarial Networks) — Divergence 2t 262 S5 g4l

ol 22E &

mjo

E
S

» Two-Stage Image Synthesis

* VQ-VAE : Use autoregressive model to learn an expressive prior * Our work prevents such tradeoffs, as our proposed LDMs scale
over a discretized latent space. [66] extend this approach to text- more gently to higher dimensional latent spaces due to their
to-image generation by learning a joint distribution over convolutional backbone.
discretized image and text representations

» Thus, we are free to choose the level of compression which

* VQ-GAN : Employ a first stage with an adversarial and perceptual optimally mediates between learning a powerful first stage,
objective to scale autoregressive transformers to larger images. without leaving too much perceptual compression up to the
However, the high compression rates required for feasible ARM generative diffusion model while guaranteeing high fidelity
training, which introduces billions of trainable parameters. reconstructions (see Fig. 1).
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2. Related Work

s+ VQ-VAE
Embedding
Space

& Figure 1: Left: A figure describing the
& ® VQ-VAE. Right: Visualisation of the
‘ embedding space. The output of the
=@ A (" encoder z(x) is mapped to the nearest
Z,(x) point e,. The gradient V,L (in red) will
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Figure 2. Our approach uses a convolutional
VQ-GAN to learn a codebook of context-rich
visual parts, whose composition is
subsequently modeled with an
autoregressive transformer architecture.
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= A discrete codebook provides the interface
Discriminator between these architectures and a patch-based
discriminator enables strong compression while
retaining high perceptual quality. This method
introduces the efficiency of convolutional
approaches to transformer based high resolution
image synthesis.
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3. Method

> To lower computational demand of training DM towards high-
resolution image synthesis

 Although diffusion models allow to ignore perceptually
irrelevant details by undersampling the corresponding loss
terms [30], they still require costly function evaluations in
pixel space, which causes huge demands in computation time
and energy resources

.. . . > Several Advantages
* Introduce an explicit separation of the compressive from the

generative leamning phase l. By leaving the high-dimensional image space, we obtain DMs

which are computationally much more efficient because

+ We utilize an autoencoding model which learns a space that aEs ) )
sampling is performed on a low-dimensional space.

is perceptually equivalent to the image space, but offers

significantly reduced computational complexity. Il. Exploit the inductive bias of DMs inherited from their UNet
architecture [71], which makes them particularly effective for
data with spatial structure and therefore alleviates the need for
aggressive, quality-reducing compression levels as required by
previous approaches [23, 66].

lll. Obtain general-purpose compression models whose latent
space can be used to train multiple generative models and
which can also be utilized for other downstream applications
such as single-image CLIP-guided synthesis [25].
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3. Method
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3.1 Perceptaul Image Compression EEEEE

Eonditionina

emanti
Map
Text

Diffusion Process

» Consists of an autoencoder trained by combination of a perceptual
loss [106] and a patch-based [33] adversarial objective [20, 23,
103].

Denoising U-Net €y

manifold by enforcing local realism and avoids bluriness introduced

» This ensures that the reconstructions are confined to the image a
H |
by relying solely on pixel-space losses such as L2 or L1 objectives

: (Pixel Space - 3 C L PEPERES EEFEE )
{ o
Q v
KV <---- (—T
» Encoder € encodes an image x into a latent representations z and denoising step crossattention  switch  skip connection concat ~——

Decoder D reconstructs the image from the latent Figure 3. We condition LDMs either via concatenation or by a more general

cross-attention mechanism.

z = E(x) X =D(z) = D(E(x))
x € REXWX3 - c RhXwxc « To avoid arbitrarily high-variance latent spaces, we experiment
with two different kinds of regularizations; KL-reg and VQ-reg
+ Encoder downsamples the image by a factor f = % = % and different ¥ KL-reg : a slight KL-penalty towards a standard normal on the

downsampling factors f = 2™ with m € N learned latent, similar to a VAE

v VQ-reg : Uses a vector quantization layer [96] within the decoder,
which can be interpreted as a VQGAN [23] but with the quantization

layer absorbed by the decoder. .
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3.2 Latent Diffusion Models

> Diffusion Model > Generative Modeling of Latent Representation

* Probabilistic models designed to learn a data distribution p(x) by - Access to an efficient, low-dimensional latent space in which high-

gradually denoising a normally distributed variable, which
corresponds to learning the reverse process of a fixed Markov Chain
of length T

For image synthesis, rely on a reweighted variant of the
variational lower bound on p(x), which mirrors denoising score-
matching

Interpreted as an equally weighted sequence of denoising
autoencoders; ¢, (x;,t);t = 1,..., T, trained to predict a denoised
variant of their input x;, noisy version of x

» The corresponding objective

Lpy =B, cono,1),t |ll€ — €o (2, t)||§] )

with t uniformly sampled from {1, ..., T}

frequency, imperceptible details are abstracted away.

@® Focus on the important, semantic bits of the data
@ Train in a lower dimensional, computationally much more
efficient space

Image-specific inductive biases; build the underlying UNet
primarily from 2D convolutional layers, and further focusing the
objective on the perceptually most relevant bits using the
reweighted bound

Lipum = EE(.['),&wN(O,l),t HE - 69(-'3“#’ t)“%} (2)

Neural backbone €4 (7, t): Time-conditional UNet

Since the forward process is fixed, z; can be efficiently obtained from
€ during training, and samples from p(z) can be decoded to image
space with a single pass through D.
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3.3 Conditioning Mechanisms

» Diffusion models are capable of modeling conditional
distributions of the form p(z|y). Be implemented with a
conditional denoising autoencoder ¢, (z;,t,v) by controlling the
synthesis process through inputs y such as text [68], semantic maps
[33, 61] or other image-to-image translation tasks [34]

» Turn DMs into more flexible conditional image generators

« By augmenting their underlying UNet backbone with the cross-
attention mechanism [97], which is effective for learning attention-
based models of various input modalities [35,36].

+ To pre-process y from various modalities (such as language prompts),
we introduce a domain specific encoder 7, that projects y to an
intermediate representation 7,(y) € R®*4: | which is then mapped

to the intermediate layers of the UNet via a cross-attention layer
implementing

Attention(Q, K, V') = softmax (Qj{__dT) Vv

Q=W -wi(z), K =W 15(y), V=W 7(y)

Latent Space : Conditioning):

:| Semanti
. Map :
: Text |+

Diffusion Process

Denoising U-Net‘é_f;_]

Pixel Space

denoising step crossattention  switch skip connection concat 5_

L

Figure 3. We condition LDMs either via concatenation or by a more general
cross-attention mechanism.

v 9;(z;) €ERN xde: g (flattened) intermediate representation of the UNet
implementing eg

v WV(D € RIXdE, WQ(i) € Rxdz WK@ € R%*4z : Learnable projection

matrices
13
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3.3 Conditioning Mechanisms : ----------------------------------------------------------------- ‘. ----------------- .:
p Latent Space : 6onditioninag

emanti
- . Map ' |-
Denoising U—Net|€g J .

'Text“
gl sl sl el :[ [ Repres | |

Diffusion Process

> Conditional LDM

) :| |entations
Lipm = ES(.rr).y,emN(O,l),t [Hf—fe(znta Te(li))”%} 3) H ‘ :
T C - LS L
Lipum = Eg(a),e~n(0,1),t [HE — e (B t)||§] QhelSpacei L\ —————— :
« Both 74 and ¢4 are jointly optimized via Eq. 3. denoising step crossattention  switch  skip connection concat et :

Figure 3. We condition LDMs either via concatenation or by a more general

+ This conditioning mechanism is flexible as t4 can be parameterized ) :
cross-attention mechanism.

with domain-specific experts, e.g. (unmasked) transformers [97] when
y are text prompts Loy =Ee ennvo)t [IIE - se(xt,t)l\g]
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4. Experiments

4.1 On Perceptual Compression Tradeoffs

» Perceptual compression Test : A signle NVIDIA A100, same number

+ LDMs with different downsampling factors f = {1,2,4,8,16,32} (LDM- of steps and parameters

f) (LDM-1 correspond to pixel-based DMs)

e FID vs. training progress Inception Score vs. training progress . .
T = 8 + i) Small downsampling factors for LDM-[1,2]
— LDM-2 v ‘1‘6 result in slow training progress, whereas ii)
150 — IDM4 _~T o0~ overly large values of f (LDM-32) cause
5 [—- LDM-8 b stagnating fidelity after comparably few
= —— LDM-16 S 2 e
T 100 2 training steps.
32 — 1omM32 220 1 g step
s 3 E ” 32 .« i) Leaving most of perceptual compression
‘116 to the diffusion model and ii) Too strong first
00 - 10 s r: 0.0 0.5 1.0 15 20 stage compression resulting in information

train step 1le6 train step 1e6 loss and thus limiting the achievable quality.

* LDM-[4-16] strike a good balance between
efficiency and perceptually faithful results,
which manifests in a significant FID [29] gap of

Figure 6. Analyzing the training of class-conditional LDMs with different downsampling factors f
over 2M train steps on the ImageNet dataset. Pixel-based LDM-1 requires substantially larger train
times compared to models with larger downsampling factors (LDM-[4-16]). Too much perceptual

compression as in LDM-32 limits the overall sample quality. All models are trained on a single 38 between pixel—b_as_ed diffusion (LDM-1) and
NVIDIA A100 with the same computational budget. Results obtained with 100 DDIM steps [84] and LDM-8 after 2M training steps.
k= 0.

15
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4. Experiments

4.1 On Perceptual Compression Tradeoffs

HIE X 3
FID vs sample throughput == X238

32 16

0 20 40 60
throughput [samples / s]

LDM-1
LDM-2
LDM-4
LDM-8
LDM-16
LDM-32

4.4

4.2

1
2

0

FID vs sample throughput

=y * il
. 32

20 40 60
throughput [samples / s]

Figure 7. Comparing LDMs with varying compression on the CelebA-HQ (left) and ImageNet (right)
datasets. Different markers indicate {10, 20, 50, 100, 200} sampling steps using DDIM, from right to
left along each line. The dashed line shows the FID scores for 200 steps, indicating the strong
performance of LDM-[4-8]. FID scores assessed on 5000 samples. All models were trained for

500k (CelebA) / 2M (ImageNet) steps on an A100.

LDM-[4-8] outperform models with unsuitable
ratios of perceptual and conceptual
compression. Especially compared to pixel-
based LDM-1, they achieve much lower FID
scores while simultaneously significantly
increasing sample throughput. Complex
datasets such as ImageNet require reduced
compression rates to avoid reducing quality.

In summary, LDM-4 and -8 offer the best
conditions for achieving high-quality synthesis
results.
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4. Experiments

4.2 Image Generation with Latent Diffusion

 Train unconditional models of 256x256 images on CelebA-HQ [39], FFHQ [41], LSUN-Churches and -Bedrooms [102] and evaluate the i)
sample quality and ii) their coverage of the data manifold using ii) FID [29] and ii) Precision-and-Recall [50].

CelebA-HQ 256 x 256

FFHQ 256 x 256

Method FID] Prec.t Recallt Method FID | Prec. T Recall 1
DC-VAE [61] 15.8 - - ImageBART [ 1] 9.57 -
VQGAN+T. [ 23] (k=400) 10.2 - - U-Net GAN (+aug) [77] 109 (7.6) =
PGGAN [ Y] 8.0 - - UDM [13] 5.54 - -
LSGM [93] 7.22 - - StyleGAN [41] 4.16 071 0.46
UDM [13] 7.16 - ProjectedGAN [70] 3.08 0.65 0.46
LDM-4 (ours. 500-sT) 5.11 072 0.49 LDM-4 (ours, 200-s) 4.98 0.73 0.50

Method FID| Prec. T Recall T Method FID|] Prec. T Recall
DDPM [ 0] 7.89 - ] ImageBART [21] 5.51 - -
ImageBART [2 1] 7.32 - - DDPM [30)] 4.9 - -
PGGAN [39] 6.42 . . UDM [13] 4.57 ‘ :
StyleGAN [41] 4.21 - - StyleGAN [-1] 2.35 0.59 0.48
StyleGAN2 [12] 3.86 . ’ ADM [15] 1.90 0.66 0.51
ProjectedGAN [76] 1.59 0.601 0.44 ProjectedGAN [76] 1.52 0.61 0.34
LDM-8* (ours, 200-s) 4.02 0.64 0.52 LDM-4 (ours, 200-s) 2.95 0.66 0.48

Table 1. Evaluation metrics for unconditional image
synthesis. CelebA-HQ results reproduced from
[43,63,100], FFHQ from [42,43].

t: N-s refers to N sampling steps with the DDIM [84]
sampler.

%: trained in KL-regularized latent space

» Alatent diffusion model is trained jointly together
with the first stage. In contrast, we train diffusion
models in a fixed space and avoid the difficulty
of weighing reconstruction quality against
learning the prior over the latent space.

17
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4. Experiments

4.3 Conditional Latent Diffusion

4.3.1 Transformer Encoders for LDMs

+ Cross-attention based conditioning into LDMs; Various
conditioning modalities

» Test-to-image modeling

» Train a 1.45B parameter KL-regularized LDM conditioned
on language prompts on LAION-400M [78].

+ Employ the BERT-tokenizer [14] and implement 74 as a
transformer [97] to infer a latent code which is mapped
into the UNet via (multi-head) cross-attention.

» This combination of domain specific experts for learning a
language representation and visual synthesis results in
a powerful model, which generalizes well to complex, user-
defined text prompts, cf . Fig. 8 and 5.

« Evaluate on MS-COCO

Text-Conditional Image Synthesis

Method FID J, IST Npa[‘ams

CogView™ [17] 27.10 18.20 4B self-ranking, rejection rate 0.017
LAFITET [109] 26.94 26.02 15M

GLIDE* [39] 12.24 - 6B 277 DDIM steps, c.f.g. [12] s = 3
Make-A-Scene* [26] 11.84 . 4B c.f.g for AR models [V8] s = 5
LDM-KL-8 2331  20.03+033 1.45B 250 DDIM steps
LDM-KL-8-G* ¥12.63  30.29+042 NJ1.45B 250 DDIM steps, c.f.g. [32] s = 1.5

Table 2. Evaluation of text-conditional image synthesis on the 256x256-sized MS-COCO
[51] dataset: with 250 DDIM [84] steps our model is on par with the most recent diffusion
[59] and autoregressive [26] methods despite using significantly less parameters.
t/%:Numbers from [109]/ [26]

* Applying classifier-free diffusion guidance [32] greatly boosts sample
quality, such that the guided LDM-KL-8-G is on par with the recent state-of-
the-art AR [26] and diffusion models [59] for text-to-image synthesis, while
substantially reducing parameter count

18



High-Resoluton Image Synthesis with Latent Diffusion Model

4. Experiments

4.3 Conditional Latent Diffusion

> Test-to-image modeling

Text-to-Image Synthesis on LAION. 1.45B Model.

‘A street sign that reads 'A zombie in the "An image of an animal "An illustration of a slightly ‘A painting of a "A watercolor painting of a 'A shirt with the inscription:
“Latent Diffusion” * style of Picasso’ half mouse half octopus’ conscious neural nerwork’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” *

m

Generative
Models!

Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the

LAION [78] database. Samples generated with 200 DDIM steps and n =1.0. We use unconditional guidance [32] with s = 10.0 19
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4. Experiments

4.3 Conditional Latent Diffusion

> Semantic layouts » Class-conditional ImageNet Model

* To further analyze the flexibility of the cross-attention « Evaluate our best-performing class-conditional ImageNet models with f = {4,8}.
based conditioning mechanism, we train models to

synthesize images based on semantic layouts on
Openimages [49], and finetune on COCO [4].

» Here we outperform SOTA diffusion model ADM [15] while significantly
reducing computational requirements and parameter count, cf . Tab 18.

Table 3. Comparison of a class-conditional ImageNet LDM with SOTA models for
class-conditional image generation on ImageNet [12].
c.f.g. denotes classifier-free guidance with a scale s as proposed in [32].

Method FIDJ IST Precisiont  Recallt  Nparams

o BigGan-deep [3] 695  203.6:26 0.87 0.28 340M :
ADM [15] 10.94 100.98 0.69 0.63 554M 250 DDIM steps
ADM-G [15] 4.59 186.7 0.82 0.52 608M 250 DDIM steps
LDM-4 (ours) 1056 103.49+1.24 0.71 0.62 400M 250 DDIM steps
LDM-4-G (ours)  3.60  247.67 55 0.87 0.48 400M 250 steps, c.f.g[32],s = 1.5

Figure 8. Layout-to-image synthesis with an LDM on COCO [4]. 20
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4. Experiments

8 (e (L DTS Table 3. Comparison of a class-conditional ImageNet LDM with SOTA methods for
. class-conditional image generation on ImageNet [12]. A more detailed comparison
» Semantic layouts with additional baselines can be found in D.4, Tab. 10 and F. c.f.g. denotes classifier-free

guidance with a scale s as proposed in [32].

Method FIDJ ISt Precisiont  Recallt  Nparams
BigGan-deep [ *] 6.95 203.6+26 0.87 0.28 340M =
ADM [15] 10.94 100.98 0.69 0.63 554M 250 DDIM steps

. ADM-G [ 5] 4.59 186.7 0.82 0.52 608M 250 DDIM steps
LDM-4 (ours) 1056 103.49+1.24 0.71 0.62 400M 250 DDIM steps
LDM-4-G (ours) 3.60  247.67 530 0.87 0.48 400M 250 steps, c.f.g[32], s = 1.5

+ Evaluate our best-performing class-conditional ImageNet models with f =
{4,8} from Sec. 4.1 in Tab. 3, Fig. 4 and Sec. D .4.

* Here we outperform SOTA diffusion model ADM [15] while significantly
reducing computational requirements and parameter count, cf . Tab 18.

» To further analyze the flexibility of the cross-attention based

E:igucrg 84'{ Layoust-to-i4rr;a$e synthesis Withl an LDM ‘|’1" conditioning mechanism, we train models to synthesize images
o Ien[we];mtseDe3 ec. 4.3.1. Quantitative evaluation in the based on semantic layouts on Openlmages [49], and finetune on
pp e COCO [4], (Fig. 8. Sec. D.3) for the quantitative evaluation and

implementation details.
21
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4. Experiments

4.3 Conditional Latent Diffusion

4.3.2 Convolutional Sampling Beyond 256x256

* LDMs - General purpose image-to-image translation models by concatenating
spatially aligned conditioning information to the input of ¢,

+ Train models for semantic synthesis, super-resolution (in 4.4), inpainting (in 4.5)

» Semantic synthesis

* Use images of landscapes paired with semantic maps [23, 61] and
concatenate downsampled versions of the semantic maps with
the latent image representation of a f = 4 model (VQ-reg., see Tab.
8).

» We train on an input resolution of 256x256 (crops from 384x384) but
find that our model generalizes to larger resolutions and can generate
images up to the megapixel regime when evaluated in a convolutional
manner (see Fig. 9).

Figure 9. A LDM trained on 256x256 resolution can generalize
to larger resolution (here: 512x1024) for spatially conditioned
tasks such as semantic synthesis of landscape images.
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4. Experiments

4.4 Super-Resolution with Latent Diffusion

 Trained for super-resolution by diretly conditioning on low-resolution
images via concatenation

#1 Experiment

» Follow SR3 and fix the image degradation to a bicubic interpolation with 4x-
downsampling and train on ImageNet following SR3’s data processing pipeline.

» Use the f = 4 autoencoding model pretrained on Openimages and concatenate
the low-resolution conditioning y and the inputs to the UNet, i.e. €4 is the

identity.
Method FID | IS T PSNR 1 SSIM 1 Nparams [@](*)
Image Regression [72] 15.2 121.1 27.9 0.801 625M N/A
SR3 [72] 52 180.1 26.4 0.762 625M N/A
LDM-4 (ours, 100 steps) 2.87/4.88 1663 244138 0.69x014  169M 4.62 , ,
emphLDM-4 (ours, big, 100 steps)  2.47/4.3%1 1749  247+41  0.71+o1s 552M 4.5 Figure 10. ImageNet 64256 super-.resolutlo.n (_)n ImageNet-Val.
LDM-4 (ours, 50 steps, quiding) ~ 4.41/6.4% 1537 258137 07402 184M 0.38 LDM-SR has advantages at rendering realistic textures but
SR3 can synthesize more coherent fine structures. See
Table 5. x4 upscaling results on ImageNet-Val. (256x256); appendix for additional samples and cropouts.

t: FID features computed on validation split, : FID features computed on train split;

%: Assessed on a NVIDIA A100 23
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4. Experiments

4.4 Super-Resolution with Latent Diffusion

#2 Experiment
» Conduct a user study comparing the pixel-baseline with LDM-SR.

+ We follow SR3 [72] where human subjects were shown a low-res
image in between two high-res images and asked for preference.

SR on ImageNet Inpainting on Places
User Study Pixel-DM (f1) LDM-4\/ LAMA [88] LDM-4 Vv
Task 1: Preference vs GT 1 16.0% 30.4% 13.6% 21.0%
Task 2: Preference Score 1 29.4% 70.6 % 31.9% 68.1%

Table 4. Task 1: Subjects were shown ground truth and generated image and
asked for preference. Task 2: Subjects had to decide between two generated
images.

v PSNR and SSIM can be pushed by using a post-hoc guiding mechanism
[15] and we implement this image-based guider via a perceptual loss.
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4. Experiments

4.5 Inpainting with Latent Diffusion

* Inpainting : Task of filling masked regions of an image with new
content either because parts of the image are corrupted or to replace 40-50% masked All samples
existing but undesired content within the image.

Method FID | LPIPS| FID] LPIPS |
LDM-4 (ours, big, w/ ft) 9.39  0.246+ 0042 1.50  0.137+0.0s0
train throughput ~ sampling throughput! traintval  FID@2k LDM-4 (ours, big, w/o ft)  12.89  0.257+ 0047 240  0.142+00ss
Model (reg.-type) samples/sec. @256 @512 hours/epoch  epoch 6 LDM-4 (ours, w/ attn) 11.87  0.257+ 0002 2.15  0.1444 o084
LDM-4 (ours, w/o attn) 12.60  0.259+ 0.041 237 0.145+ 0084
LDM-1 (no first stage) © 0.11 W 0.26 0.07 v 20.66 W 2474
LDM-4 (KL, w/ attn) 0.32 0.97 0.34 7.66 15.21 LaMa [88]T 12.31  0.243+ 0038 2.23  0.1344+ o080
LDM-4 (VQ, w/ attn) ] 0.33} 0.97 0.34 [ 7.04 14.99 LaMa [88] ) 120 024 221014
LDM-4 (VQ, wo attn) 0.35 0.99 0.36 6.66 15.95 CoModGAN [107] 104 0.26 182 015
RegionWise [57] 21.3 0.27 475 0.15
DeepFill v2 [104] 22.1 0.28 5.20 0.16
Table 6. Assessing inpainting efficiency. t: Deviations from Fig. 7 due to EdgeConnect [55] 30.5 0.28 8.37 0.16
varying GPU settings/batch sizes cf . the supplement
Table 7. Comparison of inpainting performance on 30k crops of size
512x512 from test images of Places [108]. The column 40-50%
« Aspeed-up of at least 2.7x between pixel- (LDM-1) and latent-based reports metrics computed over hard examples where 40-50% of the
diffusion models (LDM-4) while improving FID scores by a factor of at least image region have to be inpainted.
1.6x t recomputed on our test set, since the original test set used in [88]

was not available
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4. Experiments

4.5 Inpainting with Latent Diffusion

input result Figure 11. Qualitative results on object

removal with our big, w/ft inpainting model.
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5. Limitations & Societal Impact

5.1 Limitations (LDMs) 5.2 Societal Impact
+ Significantly reduce computational requirements compared to pixel- + Easier to create and disseminate manipulated data or spread
based approaches, their sequential sampling process is still misinformation and spam; "deepfake"

slower than that of GANSs.
+ Training data including sensitive or personal information

* Can be questionable when high precision is required: although the
loss of image quality is very small in our f = 4 autoencoding models
(see Fig. 1), their reconstruction capability can become a

» Deep learning modules tend to reproduce or exacerbate biases that
bottleneck for tasks that require fine-grained accuracy in pixel space. P g D

are already present in the data [22, 38, 91].

+ While diffusion models achieve better coverage of the data
distribution than e.g. GAN-based approaches, the extent to which our
two-stage approach that combines adversarial training and a
likelihood-based objective misrepresents the data remains an
important research question.
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Appendix

B. Detailed Information on Denoising Diffusion Models

5 » Diffusion models
Loy =By cnno,1),t [Ilf — €eo(z4, t)HE] (1)

« It can be specified in terms of a signal-to-noise ratio SNR(t) = a?/of
i consisting of sequences (a;)7-, and (¢,)f-; which, starting from a
data sample x,, define a forward diffusion process g as
Lipm = F.an 0,1), r[||6 *E.f 12 ] (2) PIe Xo P 1
Wstwﬁ?/ qg\e| :N T \u-,r .FT:I
Latent Vector Ibat ‘ u-NeT:ai-' ] 1( f| cl) ( t| e, Oy )
time ?WSPG%)'WL“ e with Markov structure for s < t
e
co*v\d/l’m’v y 7 R
Conditional Losy Functiow v g(xi|zs) :N(.:',Jn,“h.rs.rrfl_\\_)
L M = ]E €)1 e - zt,t ? 3 OT . £ f
LDM E(a)y.e~N(0,1), [”“ €0 (%, )”2} (3) Ctls = — O—ﬁs — 0,2 - G-fhcff
Use variational lower bound L . .
................................. , > Denoising Diffusion models
Po(Xs—1]%¢) 5 » Generative models p(x,) which revert a forward diffusion process
@ — s — @ @ e R @ with a similar Markov structure

. W i
‘\ Q(Xt|xt 1) ,’
i i : ‘p(l ol) = H

~ - -

R0 SRRSO KO R RERSNee R ORI B 28
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B. Detailed Information on Denoising Diffusion Models

» Denoising Diffusion models

[30] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
models. In NeurlPS, 2020

[45] Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational
diffusion models. CoRR, abs/2107.00630, 2021

* The evidence lower bound (ELBO) associated with this model then
decomposes over the discrete time steps

gy

—logp(zo) < KLL(q(x7|x0)|p(2T)) + ZE/

t=1

v The prior p(x;) is typically choosen as a standard normal
distribution and the first term of the ELBO then depends only

on the final signal-to-noise ratio SNR(t)

v To minimize the remaining terms, a common choice to
parameterize p(x;_1|x;) is to specify it in terms of the true
posterior q(x;_1|x:, xo) but with the unknown x, replaced by
an estimate x4 (x;, t) based on the current step x;.

p(ri—1lee) = q(xe—1|ae, w2, 1)) [45]

Mo (If

1)

2
Qg|t—10¢_q
_—y

£
Oy

afflaf\:

2
t

: of_
= N (z¢—1|po(24, 1), 012|f—1;__‘2lﬂ)

2

Z

t

l()(.l‘f. f)

Q/ V . i i
1"‘*)K]L((‘”J.’_i T.t',-_,!'u\|[)(J';_\l‘f‘_‘.’]) l)(:l() — /P )T H

Simplify to

1 ‘
ZEN((lu.I[)S(SNR(f — 1) — SNR(#))||z0 — 29 (arz0 + 0y€, )]

t=1

Use the reparametrization [30]

co(e,t) = (2 — aqag(xy,t)) /oy

to express the reconstruction term as a denoising objective
2

|lzo — zo(aszo + 0s€, t)||*= (T) |le — eg(azg + ase,t)||?
oz
:

and the reweighting, which assign each of the terms the same weight

Lpn = Egenno,1),8 [HE —eo(ze,t)[15] 29



Appendix

C. Image Guiding Mechanisms

* Intriguing feature of diffusion models is that unconditional models
can be conditioned at test-time

» Image-guiding : Guide both unconditional and conditional models
trained on the ImageNet dataset with a classifier logps (y|x;), trained
on each x; of the diffusion process

» For an epsilon-parameterized model with fixed variance, the guiding
algorithm as introduced in [15]

€ E,c)(.t;. IL) + 4 f 1— ('1;?) V log Py (Y[ze)

v Interpret as an update correcting the “score” €, with a conditional
distribution logpe (v|2¢)

v So far, this is only applied to a single-class classification model

[15] Prafulla Dhariwal and Alex Nichol. Diffusion models beat GANs on image
synthesis. CoRR, abs/2105.05233, 2021

- We re-interpret the guiding distribution p, (y|T(D(z,(2,))) as a
general purpose image-to-image translation task given a target image
Y,

» T can be differentiable transformation adopted to the image-to-image
translation task, such as the identity, a downsampling or similar.

« Ex; We can assume a Gaussian guider with fixed variance o2, such
that L, regression objective

y — T(D(20()))|2

%) = —=

log pa (y 5



Appendix

C. Image Guiding Mechanisms Samples 256° Guided Convolutional Samples 5122 Convolutional Samples 5122

1 R
logpé(’y\zt):_5||y—7(-D““(-t’)))”g

4

* Fig. 14 demonstrates how this formulation can serve as an
upsampling mechanism of an unconditional model trained on 2562
images, where unconditional samples of size 2562 guide the
convolutional synthesis of 5122 images and T is a 2x bicubic
downsampling.

Figure 14. On landscapes, convolutional sampling with unconditional
models can lead to homogeneous and incoherent global structures
(see column 2). L, -guiding with a low resolution image can help to
reestablish coherent global structures.
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D. Additional Results

layout-to-image synthesis on the COCO dataset

] = STTES ==

Figure 16. More samples from our best
model for layout-to-image synthesis, LDM-4,
which was trained on the Openlmages
dataset and finetuned on the COCO dataset.
% L% ) . Samples generated with 100 DDIM steps
: M‘a - L% - ) . and n = 0. Layouts are from the COCO

i EEy : - validation set.

=
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Appendix

D. Additional Results

LDM-BSR: General Purpose SR Model via Diverse Image Degradation

bicubic LDM-SR LDM-BSR

Figure 18. LDM-BSR(BIind Super Resolution) generalizes to arbitrary inputs and can be used as a
general-purpose upsampler, upscaling samples from a class-conditional LDM (image cf . Fig. 4) to 10242
resolution. In contrast, using a fixed degradation process (see Sec. 4.4) hinders generalization.
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E. Implementation Details and Hyperparameters

E.1. Hyperparmeters

Table 12. Hyperparameters for the unconditional LDMs
producing the numbers shown in Tab. 1. All models trained
on a single NVIDIA A100.

Table 13. Hyperparameters for the conditional LDMs

trained on the ImageNet dataset for the analysis in Sec. 4.1.

All models trained on a single NVIDIA A100.

CelebA-HQ 256 x 256

FFHQ 256 x 256

LSUN-Churches 256 x 256 LSUN-Bedrooms 256 x 256

f 4 4 8 4
z-shape 64 x 64 x 3 64 x 64 x 3 64 x 64 x 3
|Z] 8192 8192 - 8192
Diffusion steps 1000 1000 1000 1000
Noise Schedule linear linear linear linear
."Vp;u‘;lms 274M 274M 294M 274M
Channels 224 224 192 224
Depth 2 2 2 2
Channel Multiplier 1,234 1,2.34 1,2,2.4.4 1,234
Attention resolutions 32,16, 8 32.16,8 32,16,8,4 32,16,8
Head Channels 32 32 24 32
Batch Size 48 42 96 48
Iterations™ 410k 635k 500k 1.9M
Learning Rate 9.6e-5 8.4e-5 S.e-5 9.6e-5
LDM-1 LDM-2 LDM-4 LDM-8 LDM-16 LDM-32
z-shape 256 x 256 x 3 128 x 128x2 64 x64x3 32x32x4 16x16x8 88x8x32
|Z| - 2048 8192 16384 16384 16384
Diffusion steps 1000 1000 1000 1000 1000 1000
Noise Schedule linear linear linear linear linear linear
Model Size 396M 391IM 391M 395M 395M 395M
Channels 192 192 192 256 256 256
Depth 2 2 2 2 2 2
Channel Multiplier 1.1,2244 1.2,244 1,2,3:5 1.2.4 1,24 1,24
Number of Heads 1 | 1 1 1 1
Batch Size 7 o 40 64 112 112
Iterations 2M 2M 2M 2M 2M 2M
Learning Rate 4.9e-5 6.3e-5 8e-5 6.4e-5 4.5e-5 4.5e-5
Conditioning CA CA CA CA CA CA
CA-resolutions 32,168 32, 16, 8 32,16, 8 32,16, 8 16, 8,4 8,4,2
Embedding Dimension 512 512 512 512 512 512
Transformers Depth 1 1 1 1 1 1
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E. Implementation Details and Hyperparameters

E.2.1 Implementations of 7, for conditional LDMs

* For the experiments on text-to-image and layout-to-image (Sec. 4.3.1) « With ¢ available, the conditioning is mapped into the UNet via the

synthesis, we implement the conditioner 7, as an unmasked
transformer which processes a tokenized version of the input y and

produces an output { := 74 (y), where ¢ € RMxdz,

* Transformer is implemented from N transformer blocks consisting
of global self-attention layers, layer-normalization and position-
wise MLPs as follows (https://github.com/lucidrains/x-transformers)

¢ + TokEmb(y) + PosEmb(y)
forz =1....,! N :
(1 + LayerNorm(()
(o + MultiHeadSelfAttention((;) + ¢
(3 + LayerNorm((s2)
¢ + MLP((3) + (2
¢ + LayerNorm(()

cross-attention mechanism as depicted in Fig. 3.

+ We modify the “ablated UNet’ [15] architecture and replace the self-
attention layer with a shallow (unmasked) transformer consisting
of T blocks with alternating layers of (i) self-attention, (ii) a position-
wise MLP and (iii) a cross-attention layer;

input RhXwxe
LayerNorm Rhxwxe
Convlixl RAxwxd-np
Reshape Rh-wxdmy,
SelfAttention Rh-wxd-np
xT ¢ MLP Rh-u'xd-nh
Rh cwXd-np
CrossAttention
Reshape RhXwxd-np
COHV]X] ]R]l)(uf)(r

Table 16. Architecture of a transformer block as described in Sec. E.2.1, replacing
the self-attention layer of the standard “ablated UNet” architecture [15]. Here, n;,
denotes the number of attention heads and d the dimensionality per head>
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E. Implementation Details and Hyperparameters

E.2.1 Implementations of 7, for conditional LDMs

* For the text-to-image model, we rely on a publicly available tokenizer [99].
(https://huggingface.co/transformers/model_doc/bert.html#berttokenizerfast)

* The layout-to-image model discretizes the spatial locations of the bounding
boxes and encodes each box as a ([, b, ¢) -tuple. where [ denotes the (discrete)
top-left and b the bottom-right position. Class information is contained in c.

» See Tab. 17 for the hyperparameters of 74 and Tab. 13 for those of the UNet for
both of the above tasks.

* Note that the class-conditional model as described in Sec. 4.1 is also
implemented via cross-attention, where 74 is a single learnable embedding
layer with a dimensionality of 512, mapping classes y to { € R1*>12,

Text-to-Image Layout-to-Image

seq-length i 92
depth N 32 16
dim 1280 512

Table 17. Hyperparameters for the experiments
with transformer encoders in Sec. 4.3
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F. Computational Requirements

Method Generator  Classifier  Overall Inference A\"params FID| IST Precision]  Recallf
Compute  Compute Compute Throughput*

LSUN Churches 2562

StyleGAN?2 [ 12]F 64 - 64 - 59M 3.86 - - -
LDM-8 (ours, 100 steps, 410K) 18 - 18 6.80 256M 4.02 - 0.64 0.52

LSUN Bedrooms 256>

ADM [15]F (1000 steps) 232 - 232 0.03 552M 1.9 - 0.66 0.51
LDM-4 (ours, 200 steps, 1.9M) 60 - 55 1.07 274M 2.95 - 0.66 0.48
CelebA-HQ 2567

LDM-4 (ours, 500 steps, 410K) 14.4 - 14.4 0.43 274M 5.11 - 0.72 0.49
FFHQ 2562

StyleGAN2 [47] 32.134 - 32.13% - 59M 3.8 - - -
LDM-4 (ours, 200 steps, 635K) 26 - 26 1.07 274M 4.98 B 0.73 0.50
ImageNet 2562

VQGAN-{-4 (ours, first stage) 29 - 29 - 55M 0.581f - - -
VQGAN-f-8 (ours, first stage) 66 = 66 - 68M 1.14tt = : -
BigGAN-deep [ 311 128-256 128-256 - 340M 6.95 203.6:126 0.87 0.28
ADM [15] (250 steps) T 916 - 916 0.12 554M 10.94 100.98 0.69 0.63
ADM-G [15] (25 steps) T 916 46 962 0.7 608M 5.58 - 0.81 0.49
ADM-G [15] (250 steps)t ) 916 46 962 0.07 608M 4.59 186.7 0.82 0.52
ADM-G.ADM-U [15] (250 steps)” 329 30 349 na n/a 3.85 221.72 0.84 0.53
[.DM-8-G (ours. 100, 2.9M) 79 12 91 1.93 506M 8.11 1904126 0.83 0.36
I.DM-8 (ours, 200 ddim steps 2.9M. batch size 64) 79 - 79 1.9 305M 17.41 72.92 0.65 0.62
LDM-4 (ours, 250 ddim steps 178K, batch size 1200) 271 - 271 0.7 400M 10.56  103.49412: 0.71 0.62
LDM-4-G (ours. 250 ddim steps 178K, batch size 1200, classifier-free euidance [ 2 2] scale 1.25) 271 - 271 0.4 400M 3.95 178.22420 0.81 0.55
LDM-4-G (ours, 250 ddim steps 178K, batch size 1200, classifier-free guidance | | scale 1.5) 271 - 271 0.4 400M 3.60 247.67: 0.87 0.48

Table 18. Comparing compute requirements during training and inference throughput with state-of-the-art generative models. Compute during training in
V100-days, numbers of competing methods taken from [15] unless stated differently; = : Throughput measured in samples/ sec on a single NVIDIAA100; 1 :
Numbers taken from [15]; + : Assumed to be trained on 25M train examples; t1: R-FID vs. ImageNet validation set
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G. Details on Autoencoder Models

+ We train all our autoencoder models in an adversarial manner
following [23], such that a patch-based discriminator Dy, is optimized
to differentiate original images from reconstructions D (€(x)).

+ To avoid arbitrarily scaled latent spaces, we regularize the latent  + To obtain high-fidelity reconstructions, we only use a very small
z to be zero centered and obtain small variance by introducing a regularization for both scenarios, i.e. we either weight the KL term
regularizing loss term L, . by a factor ~107¢ or choose a high codebook dimensionality |Z].

» Two different regularization methods

@ Alow-weighted Kullback-Leibler-term between q¢(z|x) =
N(z; €, E,2) and a standard normal distribution N(z;0,1) as in a
standard variational autoencoder [46, 69]

@ Regularizing the latent space with a vector quantization layer
by learning a codebook of |Z]| different exemplars [96].

» The full objective to train the autoencoding model (&, D)

L Autoencoder = ltl‘lill?l max (Lm-(-(-"- D(&(z))) — Laaw(D(€E(z))) + log Dy(z) + er_q(-“ £, D))

U
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G. Details on Autoencoder Models

» DM Training in Latent Space

* Note that for training diffusion models on the learned latent space, we
again distinguish two cases when learning p(z) or p(z|y) (Sec. 4.3):

[For a KL-regularized latent space] [For a VQ-regularized latent space]

+ We sample z = £,(x) + €€, =: E(x), where e = N(0,1). » We extract z before the quantization layer and absorb the
quantization operation into the decoder, i.e. it can be interpreted as

* When rescaling the latent, we estimate the component-wise variance the first layer of D.

from the first batch in the data

1

~2 § b,c.,h,w A\ 2 A 1 B g
g = 2 ——l[) b= —3— . 2Py
behw ; ( / behu Zb‘(.,h.u
,e.h,w

* The output of € is scaled such that the rescaled latent has unit
standard deviation; i.e.:
E(x)

G

2

Qe
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