1

Overview Diffusion Model Artificial Intelligence

Suk-Hwan Lee

Dong-A University

Division of Computer Engineering &
Artificial Intelligence

[Technical Blog]
Lil'Long, "What are Diffusion Models?"

References

[Technical Blog]
Sergios Karagiannakos,Nikolas Adaloglou, "How diffusion models work:

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/#imagen the math from scratch"

¥ Table of Contents

* What are Diffusion Models?
o Forward diffusion process
= Connection with stochastic gradient Langevin dynamics
Reverse diffusion process
Parameterization of L; for Training Loss

(o]

[e]

= Simplification
= Connection with noise-conditioned score networks (NCSN)
o Parameterization of B¢
o Parameterization of reverse process variance g
¢ Conditioned Generation
o Classifier Guided Diffusion
o Classifier-Free Guidance

https://theaisummer.com/diffusion-models/

e Speed up Diffusion Models
o Fewer Sampling Steps & Distillation
o Latent Variable Space
Scale up Generation Resolution and Quality
Model Architecture
Quick Summary
Citation

References

[Updated on 2021-09-19: Highly recommend this blog post on score-based generative modeling by

Yang Song (author of several key papers in the references)].

[Updated on 2022-08-27: Added classifier-free guidance, GLIDE, unCLIP and Imagen.
[Updated on 2022-08-31: Added latent diffusion model.

[Updated on 2024-04-13: Added progressive distillation, consistency models, and the Model

Architecture section.

[Technical Blog]
Lil'Long, "What are Diffusion Models?"
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/#imagen

[1] Jascha Sohl-Dickstein et al. “Deep Unsupervised Learning using
Nonequilibrium Thermodynamics.” ICML 2015.

[2] Max Welling & Yee Whye Teh. “Bayesian learning via stochastic
gradient langevin dynamics.” ICML 2011.

[3] Yang Song & Stefano Ermon. “Generative modeling by estimating
gradients of the data distribution.” NeurlPS 2019.

[4] Yang Song & Stefano Ermon. “Improved techniques for training
score-based generative models.” NeuriPS 2020.

[5] Jonathan Ho et al. “Denoising diffusion probabilistic models.” arxiv
Preprint arxiv:2006.11239 (2020). [code]

[6] Jiaming Song et al. “Denoising diffusion implicit models.” arxiv
Preprint arxiv:2010.02502 (2020). [code]

[7] Alex Nichol & Prafulla Dhariwal. “Improved denoising diffusion
probabilistic models” arxiv Preprint arxiv:2102.09672 (2021). [code]

[Technical Blog]

Sergios Karagiannakos,Nikolas Adaloglou, "How diffusion models work:
the math from scratch"

https://theaisummer.com/diffusion-models/

[8] Prafula Dhariwal & Alex Nichol. “Diffusion Models Beat GANs on
Image Synthesis." arxiv Preprint arxiv:2105.05233 (2021). [code]

[9] Jonathan Ho & Tim Salimans. “Classifier-Free Diffusion Guidance."
NeurlPS 2021 Workshop on Deep Generative Models and Downstream
Applications.

[10] Yang Song, et al. “Score-Based Generative Modeling through
Stochastic Differential Equations." ICLR 2021.

[11] Alex Nichol, Prafulla Dhariwal & Aditya Ramesh, et al. “GLIDE:
Towards Photorealistic Image Generation and Editing with Text-
Guided Diffusion Models." ICML 2022.

[12] Jonathan Ho, et al. “Cascaded diffusion models for high fidelity
image generation." J. Mach. Learn. Res. 23 (2022): 47-1.

[13] Aditya Ramesh et al. “Hierarchical Text-Conditional Image
Generation with CLIP Latents." arxiv Preprint arxiv:2204.06125
(2022).

[Technical Blog]
Lil'Long, "What are Diffusion Models?"
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/#imagen

[14] Chitwan Saharia & William Chan, et al. “Photorealistic Text-to-Image
Diffusion Models with Deep Language Understanding." arxiv Preprint
arxiv:2205.11487 (2022).

[15] Rombach & Blattmann, et al. “High-Resolution Image Synthesis with
Latent Diffusion Models." CVPR 2022.code

[16] Song et al. “Consistency Models” arxiv Preprint arxiv:2303.01469
(2023)

[17] Salimans & Ho. “Progressive Distillation for Fast Sampling of
Diffusion Models” ICLR 2022.

[18] Ronneberger, et al. “U-Net: Convolutional Networks for Biomedical
Image Segmentation” MICCAI 2015.

[19] Peebles & Xie. “Scalable diffusion models with transformers.” ICCV
2023.

[20] Zhang et al. “Adding Conditional Control to Text-to-lmage Diffusion
Models.” arxiv Preprint arxiv:2302.05543 (2023).

[Technical Blog]

Sergios Karagiannakos,Nikolas Adaloglou, "How diffusion models work:
the math from scratch"

https://theaisummer.com/diffusion-models/

What are Diffusion Models?

* Generative models; GAN, VAE, and Flow-based models. - Great

N
0
S

success in generating high-quality samples

Generator

G(z)

Discriminator

D(x)

GAN: Adversarial x' X
» Limitations training

* GAN models : Potentially unstable training and less diversity in

generation due to their adversarial training nature.

Decoder
po(x|2)

* VAE : Relies on a surrogate loss (== Cfj2|&&l8t4 - ELBO). VAE: maximize
variational lower bound
ELBO(Evidence lower

* Flow models : Have to use specialized architectures to construct

reversible transform bound)2} 3t
. . I
« Diffusion models Flow-based models: x| Flow % "l’frse
) o _ Invertible transform of f(x) f~(2)
* Inspired by non-equilibrium thermodynamics. distributions
* Define a Markov chain of diffusion steps to slowly add random
noise to data and then learn to reverse the diffusion process to Diffusi ol
H = nrusion modaeis: X X X -
construct desired data samples from the noise. Gadnally sdd Gausslan 0 — X1 —Xo—— -
« Unlike VAE or flow models, diffusion models are learned with a BRI
fixed procedure and the latent variable has high
dimensionality (same as the original data). Fig. 1. Overview of different types of generative models.

» Several diffusion-based generative models have been proposed with similar ideas underneath, including diffusion probabilistic models (Sohl-
Dickstein et al., 2015), noise-conditioned score network (NCSN:; Yang & Ermon, 2019), and denoising diffusion probabilistic models
(DDPM; Ho et al. 2020). 5

What are Diffusion Models?

1. Forward diffusion process

Given a data point sampled from a real data distribution x,~q(x), let us
define a forward diffusion process in which we add small amount of
Gaussian noise to the sample in T steps, producing a sequence of noisy
samples x4, ...,Xr. The step sizes are controlled by a variance schedule

{Be € (0, 1)}
qa(xexe-1) = N (x5 /1 — Bexe—1, BeX) q(x1.7[%0) = Hq X¢|x¢-1)

The data sample x, gradually loses its distinguishable features as the
step t becomes larger. Eventually when T — oo, x; is equivalent to an
isotropic Gaussian distribution.

My X,
Q(X3|Xt71) = N(xt; V1-— ﬂtxtflalgtl)

Center of the Noise u, = (1 — f;)x;_1: Slightly shifting the image by a
factor that depends on pB;, with B; controlling how much we deviate from
the original.

Spread of the Noise X, = ;I (I is the identity matrix) : The noise is
added independently to each pixel or feature of the image. The term g,
scales this noise.

Use variational lower bound

| Rl A
. voog(xelxe-1)

~ - -

N
~
A =3
2
2z
s
Bl
\ S—
\

()

Fig. 2. The Markov chain of forward (reverse) diffusion process of
generating a sample by slowly adding (removing) noise. (Image source: Ho
et al. 2020 with a few additional annotations)

> Iterative Refinement

» At each step t, the image is slightly shifted (according to the mean) and
then noise is added around this shifted version (according to the
variance). Over multiple steps, this leads to an image that’s increasingly
noisy. But remember, it’s not random noise; it’s structured and based
on the original image.

* The power of the diffusion model lies in reversing this process. By
training on this forward noise process, the model learns to do the
reverse: starting from a noisy image, it iteratively refines and

‘denoises’ it to produce a clear, coherent sample. 6

What are Diffusion Models?

1. Forward diffusion process

> Question: Why do we need the scaling factor (1 — ;) to shift the
mean?

The mean deviation from the image in the diffusion process is essential for
achieving the generative capability of the model.

e = (1= Be)xe_q, X =Pl

The mean, u;, in the diffusion process, represents where we expect our
image to be after adding noise at time t.

The term (1 — f3;) acts as a tether, ensuring that our image doesn’t drift
too far from its starting point. However, as g, increases, our “tether”
allows for more slack, meaning the image can drift slightly.

By controlling this drift using ;, we ensure that our changes, while making
the vehicle (original) image different, still retain its essence and are
recognized as a vehicle (original).

Over time, this controlled deviation allows the model to explore and
generate a diverse set of images

¢ Introduction to Diffusion Models (Part Ill. Diffusion Process)
https://scalexi.medium.com/introduction-to-diffusion-models-part-iii-
diffusion-process-cf18bdd36cc4

» Setting the Stage: Multi-dimensional Scenario

* When working in a multi-dimensional space, I denotes the identity matrix,
which, in this context, implies each dimension has a consistent standard
deviation f;.

* q(X¢|x¢-1) is a conditional normal distribution described by the mean p,
and variance X,

K X,
g(x¢|x¢—1) = N(x¢5 /1 — Bixi—1, Be)

What are Diffusion Models?

1. Forward diffusion process ¢ Introduction to Diffusion Models (Part IIl. Diffusion Process)
https://scalexi.medium.com/introduction-to-diffusion-models-part-iii-
diffusion-process-cf18bdd36cc4

» Tractability of Progression » The Reparametrization Trick

 Starting from our initial data x, and progressing to xr » The reparametrization trick simplifies this process.

T * Instead of working with g;, we introduce a; = 1 — 8, and its cumulative
q(x1.7|%0) = H q(x¢|x¢-1) product up to time @, .
t=1 + This trick allows us to express x; in terms of the initial point x, and some
+ The colon symbol (:) means that we are applying the function g across all noise e.

timesteps from1to T.
xy ~ q(x¢|lxg) = N(awzo, (1 —az)I) = Next page

% Achallenge arises !!! + With g, pre-defined, we can calculate a; and @, for all timesteps
beforehand. Now, to obtain a sample x, at any timestep, just sample the

+ If we wanted to sample x; for t=500 (before reaching T), we’'d have to ' b :
noise € and plug it into the equation above.

apply the function 500 times. That’s inefficient!

+ Rather than directly sampling from a distribution, we use another route to
achieve our goal for the efficient computation.

What are Diffusion Models?

1. Forward diffusion process

A nice property of the above process is that we can sample x; at any arbitrary time step
t in a closed form using reparameterization trick. Let a, = 1 — g, and @, = [[}_; a;:

Xt = VouXs 1+ 1— o€ where €;_1,€; 5, ~ N(0,1)
= Jorap1xi-2 + /1 — a1, 2 where €_5 merges two Gaussians (*).

:\/&_tonr\/l—&te

q(x¢|x0) = N(xs; \/C_Ttxﬂa (1 —ay)I)

(*) Recall that when we merge two Gaussians with different variance, N (0, aI)
and N(0,02I), the new distribution is N (0, (c? + o2)I). Here the merged standard
deviation is —\/(1 - at) + at(l - at_l) = \/1 — A1

Usually, we can afford a larger update step when the sample gets noisier, so
p1 < B2 < -+ < By and therefore a; > -+ > ar

X ~q(X¢|Xe—1) = N(Xp; Varxe—q, (1 — a)I)
Xe = VaXeo1 +/1 — €y

Xe =Var (Vo %o H 1T —a 6 5) {1 — €
= Vo /a1 X + 4/ ae(2+ 1—a€

N, a;(1—ai_1)I) N, (1 —apI)

Sum of two gaussian distributions with
different variance
= N(O, (1 - atat_l)l)

Xe~q(Xe|Xe—1) = N(Xg; Varxe—q, (1 — a)I)
t
Xe~q(X¢|X0) = N(x¢; /@xo, (1 — @&)I) ay = l_L_l“t

What are Diffusion Models?

1. Forward diffusion process

=] Memo Original Form Reparametrized Form
Reparameterization trick : VAE e i RS EResEEes S s
NT T . . 0”19, . R | I |
https://lilianweng.github.io/posts/2018-08-12-vae/#reparameterization-trick : & : : Backprop <
, ;]
Reparameterization trick : The expectation term in the loss function : Lo l T
| =
invokes generating samples from z~q,(z|x). Sampling is a stochastic z ~ a(z$.x) i) 9f/9z L2y = 9(@xE)
process and therefore we cannot backpropagate the gradient. To make | : : / /T
it trainable, the reparameterization trick is introduced: It is often possible to : ® b L i 8 ~ p(e)
express the random variable z as a deterministic variable z = T (x, €), where | 4 : : 0f/0¢; i
€ is an auxiliary independent random variable, and the transformation | i =0L/0¢;
function T, parameterized by ¢ converts € to z. e - B
: Deterministic node [Kingma, 2013]
‘ [Bengio, 2013]
. [Kingma and Welling 2014]
. di [Rezende et al 2014]

z ~ g(zx?) = N(z; n, 0*I1)
%z = p+ o © €, where € ~ N(O, I) ; Reparameterization trick.

What are Diffusion Models?

Connection with stochastic gradient Langevin dynamics

Langevin dynamics is a concept from physics, developed for statistically
modeling molecular systems. Combined with stochastic gradient descent,
stochastic gradient Langevin dynamics (\Welling & Teh 2011) can produce
samples from a probability density p(x) using only the gradients
V,logp(x) in a Markov chain of updates:

y — . . .
X, = Xp_1 + ‘_ V, logp(x; 1) +V3e;, wheree; ~N(0,I) Compgred. t9 standard SGD, sftoc.hastlc gradient Langevin
2 » dynamics injects Gaussian noise into the parameter

\ \ | updates to avoid collapses into local minima.
Score : Control Drift

where § is the step size. When T — «, € = 0, x equals to the true
probability density p(x)

Stochastic Gradient Langevin Dynamics
https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf

2. Reverse diffusion process

> Reverse Diffusion: From Noise to Image

You begin with a highly diffused image, represented by x;.

The challenge now is to “un-noise” this image, moving sequentially in
reverse from x; to x,. The process is represented by p(x,_4|x;), indicating
the probabilistic rule or mechanism that governs this backward journey.

Q($t|ﬂ?t—1)

g — > Tyl ——————> Ly —> - —— I

Reverse Diffusion Process. [Source the Al Summer]

What are Diffusion Models?

Introduction to Diffusion Models (Part Ill. Diffusion Process)

Starting point x; : the distorted or noisy image.

Intermediate states (x;, X;_4, ...,) : These are the steps between the
completely distorted image and the original, where we systematically
remove the noise.

End pint x, : the original, undistorted image.

q(x¢|x;_1) : This represents the forward diffusion process, guiding how we
transition from one state to the next. Think of it as the rule by which we
added noise to our image.

p(X;_1|X¢) : This is the heart of the reverse diffusion. It's the rule that
dictates how we trace our steps back, effectively removing the noise.

12

What are Diffusion Models?

2. Reverse diffusion process +» Introduction to Diffusion Models (Part Ill. Diffusion Process)

» Decoding the Reverse Diffusion Equation

The reverse diffusion process at a specific timestep ¢

po(xe_1|xe) = N (x¢_1; po(xs, £), Bo(xe, £)) s The mgan gives the best g.uess of that preylou§ frame., \{vh||<.a
the variance tells how confident or uncertain this prediction is.

* pe(X¢—1|X%¢): The conditional probability distribution of the image at the
previous timestep x;_; given the current image x,. Essentially, it answers
the question: “Given the current noisy image x,, what is the likelihood of
the previous image being x;_,?”

* 1p(x.,t): The mean of the Gaussian distribution, parameterized by 6. Itsa * Zg(X;, t) : Represents the Gaussian distribution's variance (or spread),

function of the current image x, and the timestep t. In simpler terms, it also parameterized by 6. This variance indicates how “spread out” or
provides the expected or “average” image at the previous timestep, given varied the possible images at x,_; could be, given x,. A larger variance
our current image. It's the central point from where the reverse diffusion means that there is a wider range of possible images for x,_;, while a
starts. smaller variance indicates that the possible images are closely packed

around the mean.

13

What are Diffusion Models?

2. Reverse diffusion process

t=0 t="1 t=T
If we can reverse the above process and sample from q(x;_4|x;), we , , ,
will be able to recreate the true sample from a Gaussian noise input, ﬁ,;:‘,._?;:‘ P ED
xr~N(0,I). The forward trajectory 3} 'ﬁi 358 _
Note that if 5, is small enough, q(x;_1|x;) will also be Gaussian. ®. . s St
Unfortunately, we cannot easily estimate q(x;_;|x,) because it needs ¢y TR |
to use the entire dataset and therefore we need to learn a model py to -2 o 2) 61 2 -25 0 >
approximate these conditional probabilities in order to run the reverse 2 2 T
diffusion process. i
The reverse trajectory i : __'l". -4
Reverse diffusion process po(Xo.1) o 1 oFE d.:_%.f-i 1 o 1 »
po(xor) = p(xr) Hpa x1-1/%) a1 -

of
N

|

N
o
N

Pa(xt_1|xt) = N(xt—l; #B(xt,t)a Eg(xt,t))

The drifting term
Forward diffusion process po(xe,t) — x4

q(X¢|Xe—1) =NXe5 /1 = BeXi—q, Bel)

= NXpvaxe—1, (1 —a)l) .
_ = _ = Fig. 3. An example of training a diffusion model for modeling a 2D swiss roll
q(x¢[%o) = N(xt,\/axo, A-a)h @ = 1_[% data. (Image source: Sohl-Dickstein et al., 2015) 14

i=1

»
e

«

aan> o

N VYRR

. qa-r1d

RYPPERPL 42 PN

van «

What are Diffusion Models?

2. Reverse diffusion process

It is noteworthy that the reverse conditional probability is tractable when conditioned on x:

q(xt-1]x¢, x0) = N(x¢-15 f1(xt, X0), 5:1)

Using Bayes’ rule, we have:

q(xt_llxt’xo) = Q(xtlxt_l,xo)m @
q(xt[x0) @
YRR S NN = S
2 o Bt @ l1l—a ® 1-a
1 x? - 2,/atxtxt—1+atxf-1 x§-1_2\/mx0xt—l+&t_1xg (xt . \/a_th)z
— exp (— _(+ . B _
o 1 2 2/ 2+/a_1
= e . B) C)
exp (2 ((B " L=)xi1— (B, Xt + 1—a,, X0)X¢—1+ (xt,xO))

where C(x;,Xq) is some function not involving x,_; and details are omitted.

= Conditional distributions of the multivariate
normal distribution :
https://statproofbook.qgithub.io/P/mvn-cond.html

= Multivariate normal distribution :
https://en.wikipedia.org/wiki/Multivariate normal
distribution

= Bayes Theorem of 3 Events
P(B|ANC) P(A|C)
P(B|C)

P(A|BNC) =

)

Po(Xe—1]xe) = N (x¢—1; pro(xs, 1), Bg(x4, 1))
q(x¢|xs-1) = N(x45 /1 — Bexs—1, Bie])

ar=1-p;

q(X¢|xo) = N(X¢; \/(Y_txo, 1 —-anh

15

What are Diffusion Models?

2. Reverse diffusion process

Following the standard Gaussian density function, the mean and variance can be

Xy = Hf=1 a):

parameterized as follows (recall that a; = 1 — ; and @,

B 1 _ =0t pBry 1—ae
Bi = 1/(—l—aﬁl)_ /(Bt(l—&t_1)) 1—a, B
)= (2 1) (5)
Qi1 ai—1

B \/_ Va 1—0%—1

= (1—at Xl

B \/(Tt(l—at 1 \/at lﬁt

- 1—(_1t l—at *o

—-/1—a;e,) and

Thanks to the nice property, we can represent x, = E(Xt

plug it into the above equation and obtain:

\/‘Tt(luat—l) Vat 18 1 i —

Mt = T — s —

V1—aue)

].—Ctt a

N (x¢-1; fo(xt, %0), Be])
5 o = - XO)xt 1+C(xt,x0)))

q(xt-1|xt,%0) =

1 1
oceXp(((g: ﬁ)xfl_(3, x+1_
X exp(— = (X¢—1 — (Xt X0))?)

xa t

;where €;1,€;9,--- ~ N(0,I)

;jwhere €, 5 merges two Gaussians (*).

Xt = VoXp 1+ 1 —aep
= Vo 1Xp 9+ /1 -y 1€ 9

—\/—xo+\/1—ate

16

2. Reverse diffusion process

As demonstrated in Fig. 2., such a setup is very similar to VAE and thus we
can use the variational lower bound to optimize the negative log-likelihood.

|po(x1.7|%0))
q(x1.7|x0)]
PG(XO:T)/PB(XD)

+ 1nge(x0)]

—log ps(x9) < —logpe(xo) + Dxur(

== logpg(xo) =]Exl r~q(Xx1:7|%0) [log

x1.7|x
= —log pe(x0) + E, [log %

g(x1.7[%0) J
po(xor)

q(x1.7|%0)
Let LVLB =]EQ(XO:T) [log m]

=E,log

A%

—Eg(x) log pa(x0)

Use variational lower bound

Pe(xt llxt
@H H@ @H = (%)
Xt_|)_(;1 p _ D

\ ’
,

5 -

Wdia s

q(x:—1]%¢) is unknown

What are Diffusion Models?

It is also straightforward to get the same result using Jensen’s inequality. Say

we want to minimize the cross entropy as the learning objective,

Lce = —Eq(xg) log ps(x0)
= _Eq(xU) log ([PB(XU:T)dxlzT)

X0
= —Eqy(xg) log (fq(xerlxﬂ)del:T)

q(x1:7/%0)
= —Eqy(x,) log (]Eq(x1ﬂ‘|x0) %)
< ~Ey(xor) log %
=B) [log %] = Lvip
T < o
q(x1.7[%0) = tl;Ilq xt[x¢-1) po(xor) = p(xr Hpe(Xt 1)

17

What are Diffusion Models?

2. Reverse diffusion process

To convert each term in the equation to be analytically
computable, the objective can be further rewritten to be a

Lvin = Eqfxgn) | log

po(xo:7)

_Ep IT a(xefx: 1)
combination of several KL-divergence and entropy terms -1 po(x7) Hf:l po(xe_1]x¢)]
i T
= See the detailed step-by-step process in Appendix B = E,| — logpg(xr) + Z log M]
in Sohl-Dickstein et al., 2015): - = Po(xe-1lxe)
Deep Unsupervised Learning using Nonequilibrium - L5 g(x¢|x:-1) q(x1|x0)
_ =E,| —logps(xr) + ¥ log ———F\+log —]
Thermodynamics 70 ; Po(Xe-1/x) \ 7 po(x0lx1) | By Bayes' rule
T _
q(xi-1|x¢,x0) g(x¢[x0) q(x1|x0)
= Eq| — log pa(xT) + lo (.)—I—lo —]
ol | g po(xz) ; . Po(xs—1]x¢) q(x¢—1/x0) e Po(xo|x1)
7
' q(x¢—1|x¢, Xo) q(x¢[xo) q(x1/x0)
=E,| — log po(x7) + log + log +1]
q| Po(xr) Z po(xi—1|%:) 2; q(x¢-1|x0) po(xo|x1)
q(x¢-1/x¢, x0) q(xr|x0) q(x1xo0)
—E,| — log po(x1) +) log +log———= +log]
[toamten) 3 g T g S g S50
q(xr|x0) q(x¢-1|x4,%0)
—E,|log + log — log po(xo|x1]
. po(xr) Z pe(xt_llx) paxsr)

= Eq[Dxr(q(xr|x0) | po(x7)) + ZDKL(Q X¢—1/%¢,%0) || Po(xe-1/x+)) —log po(xo|x1)]

LT L: 1 Lo

What are Diffusion Models?

2. Reverse diffusion process

Let’s label each component in the variational lower bound loss separately:

Lvip=Lr+ Ly 1+---+ Ly
where Ly = Dx,(q(x7|x0) || pe(xr))
V Lt = Dxi(q(x¢|xt+1,%o0) || po(xe|xe+1)) for 1 <t <T —1
Lo = —log pe(xo|x1)

« Every KL term in Ly g (except for L,) compares two Gaussian distributions
and therefore they can be computed in closed form.

Closed form : Multivariate normal distributions
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence#Multiv
ariate_normal_distributions

» L is constant and can be ignored during training because q
has no learnable parameters and x is a Gaussian noise.

* Ho et al. 2020 (Denoising Diffusion Probabilistic Models)
models L, using a separate discrete decoder derived from

N(XO; Ho (Xlr 1)) 29 (Xlr 1))

19

What are Diffusion Models?

3. Parameterization of L; for Training Loss

Recall that we need to learn a neural network to approximate the conditioned probability
distributions in the reverse diffusion process, pg (X:_11X:) = N(X¢_1; o (X¢, t), Zo (X, t)).-

. . L~ 1 1-
We would like to train pg to predict fi; = = xX¢ — Jliet) Because x; is available as input

at training time, we can reparameterize the Gaussian noise term instead to make it predict
€; from the input x; at time step ¢:

! L ey (x0,0))

(1—-«a

— X —_— —

Vi [-a
i | 1-—

Thus x¢—1 = N (x¢t-1; —— (xt - —ateg(xt,t)) , Xo(xt,t))

“B(Xt: t) =

vV gy Vv 1-— c"xt
The loss term L, is parameterized to minimize the difference from fi;:
- 1 .
L; = Exo. e, o) — po(oxs,)]

- 2|[Zo(xt,)13

= Fooe ey 7 (%~ Vi) ~ v (%~ v)]
B[e e,)]

L 20,(1 — @) || Zol|3

_ 1 = 2
=]EX(],e (t) 2 ”Et — Eg(\/ dtx() + ‘\/ 1 — ath,t)“Z]

| 200(1— &) | o3

to(Xp,), Zg(Xp, t)

: PB(Xt—1|Xt) ;
-> EEE— —
: K. w :
1 i A
voog(xelxe—1))

N o -

q(x;_1|%¢) is unknown

e q(xa—1|Xt,xo) "ﬂt'(X't','Xo)'Etl

Lt = Dxvu(g(xe|xt+1,%0) || po(xe|x¢+1))
Po(Xe—11Xe) = N(X¢—1; o (X¢,), Zg (X, 1))

g(xt-1]x¢, %X0) = N (x¢-1; fo(xt,%0), SeX)

Xy = \/(tho + 1 - C_xte

20

What are Diffusion Models?

Simplification

Empirically, Ho et al. (2020) (Denoising Diffusion Probabilistic Models) found Algoritm 1. Training
that training the diffusion model works better with a simplified objective that é repeat
ignores the weighting term: 3j ;c?vnij?’l(i;g)r)ln((1 'y
4: e~ N(0,I)
i 5: Take gradient descent step on
[P |, E[e—e Xz, & 2]
[7 t [I,T],X{), t ” t 0(i)“ Vg He _ Eg(\/a—txo + mﬁ,t)||2
= Eooiu e llee — eo(V/axo + V1= aner,)] 6: until converged
The final simple objective is: Algorithm 2 Sampling
Lsimple = L:imp]e + C 1: XT ~ N(O, I)
2: fort=1T,...,1do
where C is a constant not depending on 6. 33 2~ N(OI)ift> 1, elsez=0
4 xe1= 2k (% — SE2eo(xi,t)) +ouz
5: end for
6: return xo

Fig. 4. The training and sampling algorithms in
DDPM (Image source: Ho et al. 2020)

21

What are Diffusion Models?

Connection with noise-conditioned score networks (NCSN)

» Song & Ermon (2019) proposed a score-based generative modeling
method where samples are produced via Langevin dynamics using
gradients of the data distribution estimated with score matching.

= By notation in Song : Score function — Score Network

Sg(x) = Vylogp(x)

« The score of each sample x’s density probability is defined as its gradient
Vi log q(x).

« Ascore network sg: R? - RP is trained to estimate it, sy (x) =~ V, log q(x).

+ To make it scalable with high-dimensional data in the deep learning setting,
th?y proposed to use. either denoising s?or? matching (Vincent, 2011) or 1) Song & Ermon, Generative Modeling by Estimating Gradients of the Data
sliced score matching (use random projections; Song et al., 2019). Distribution
Denoising score matching adds a pre-specified small noise to the data
q(X|x) and estimates q(X) with score matching.

2) Vincent, denoising score matching

3) Song et al., Sliced score matching

» Recall that Langevin dynamics can sample data points from a probability % Stochastic gradient Langevin dynamics can produce samples
density distribution using only the score V, log g(x) in an iterative process.. from a probability density p(x) using only the gradients V, log p(x)
in a Markov chain of updates:

é
X; = X1 + va log p(x;_1) + Vde;, where €, ~ N(0,1)
22

What are Diffusion Models?

Connection with noise-conditioned score networks (NCSN)

» However, according to the manifold hypothesis, most of the data is » Song & Ermon (2019) improved it by perturbing the data with the noise of
expected to concentrate in a low dimensional manifold, even though different levels and train a noise-conditioned score network to jointly
the observed data might look only arbitrarily high-dimensional. It estimate the scores of all the perturbed data at different noise levels.

brings a negative effect on score estimation since the data points

cannot cover the whole space.
» The schedule of increasing noise levels resembles the forward diffusion

« In regions where data density is low, the score estimation is less process. If we use the diffusion process annotation, the score
reliable. After adding a small Gaussian noise to make the perturbed approximates sq (x;, t) ~ Vy, log q(x,). Given a Gaussian distribution
data distribution cover the full space RP?, the training of the score x~N(u, a?I), we can write the derivative of the logarithm of its density
estimator network becomes more stable. function as V, logp(x) = Vy (_ﬁ (x — M)z) _ _;:_zu _ _5’ where

e~N(0,I)

Recall that g(x¢|xo) ~ N (va@:xo, (1 — a@:)I)

Therefore,

Se(xh t) 2 VXz log q(xt)

€g(xy,t €g(xs,1t)
= IEq(x0) [qu(xt|x0)] = IEq(xo) [t] =———2

\/1—0,’15

1—at

23

What are Diffusion Models?

4. Parameterization of 3,

* The forward variances are set to be a sequence of linearly increasing
constants in Ho et al. (2020), from B, = 10~* to f; = 0.02. They are
relatively small compared to the normalized image pixel values between [-
1,1]. Diffusion models in their experiments showed high-quality samples but
still could not achieve competitive model log-likelihood as other generative
models.

* Nichol & Dhariwal (2021) proposed several improvement techniques to help
diffusion models to obtain lower NLL(Negative Log Likelihood). One of the
improvements is to use a cosine-based variance schedule. The choice of
the scheduling function can be arbitrary, as long as it provides a near-linear
drop in the middle of the training process and subtle changes around t = 0
andt=T.

. oy _ @ _ - =
B = clip(1 — . 0.999) a; = £0) where f(t) = cos (TTs 2

where the small offset s is to prevent 5, from being too small when close to t.

t/T + s 11-)2

1.0

0.8

0.2 A

0.0 -

0.0 0.2 0.4 0.6 0.8 1.0
diffusion step (t/T)

Fig. 5. Comparison of linear and cosine-based scheduling of £,
during training. (Image source: Nichol & Dhariwal, 2021)

24

What are Diffusion Models?

5. Parameterization of reverse process variance X,

» Ho et al. (2020) (DDPM) chose to fix 8, as constants instead of making
them learnable and set £, (x,,t) = o1, where o, is not learned but set to

1_

B, or By = f;‘l. Because they found that learning a diagonal variance Z4
—Ut
leads to unstable training and poorer sample quality. Model ImageNet CIFAR
Glow (Kingma & Dhariwal, 2018) 3.81 3.35
» Nichol & Dhariwal (2021) (Improved DDPM) proposed to learn Z4(x;,t) as Flow++ (Ho et al., 2019) 3.69 3.08
an interpolation between B, and S, by model predicting a mixing vector v: PixelCNN (van den Oord et al., 2016¢) 3.57 3.14
P fr and i by P 9 9 v SPN (Menick & Kalchbrenner, 2018) 3.52 -
NVAE (Vahdat & Kautz, 2020) - 2.91
So(x,.1) = exp(vlog B, + (1 — v) log 3 Very Deep VAE (Child, 2020) 3.52 2.87
o(x:,t) = exp(vlog By + ()log £1) PixeISNAIL (Chen et al., 2018) 3.52 2.85
i L Image Transformer (Parmar et al., 2018) 348 2.90
+ However, the simple objective L, does not depend on Xy. To add the Sparse Transformer (Child et al., 2019) 3 44 2.80
dependency, they constructed a hybrid objective Routing Transformer (Roy et al., 2020) 3.43 -
L _ L DDPM (Ho et al., 2020) 3.77 3.70
hybrid = Lsimple + ALvLp DDPM (cont flow) (Song et al., 2020b) - 2.99
Improved DDPM (ours) 3.53 2.94

where 1 = 0.001 is small and stop gradient on g in the Ly; 5 term such
that Ly 5 only guides the learning of Z,.

N . _ o Fig. 6. Comparison of negative log-likelihood (NLL) of improved DDPM
* Empirically they observed that Ly 5 is pretty challenging to optimize likely with other likelihood-based generative models. NLL is reported in the unit
due to noisy gradients, so they proposed to use a time-averaging of bits/dim. (Image source: Nichol & Dhariwal, 2021)

smoothed version of Ly g with importance sampling.
25

Conditioned Generation

While training generative models on images with conditioning information such as ImageNet dataset,

it is common to generate samples conditioned on class labels or a piece of descriptive text.

Classifier Guided Diffusion

To explicit incorporate class information into the diffusion process, Dhariwal

& Nichol (2021) trained a classifier fg (v|x;, t) on noisy image x; and use
gradients V, log f5 (¥|x;) to guide the diffusion sampling process toward the
conditioning information y (e.q. a target class label) by altering the noise
prediction.

Recall that V logpg (x¢) = —;69 (x¢,t) and we can write the score

Ji-a;

function for the joint distribution g(x,, y) as following,

Po(X¢)
Vx, log g{=ry) = Vx, log gat) + Vi, log gfyize)

Po.p(Xe,¥) 1 -
~ ——————e€g(x¢,t) + Vy, lo b
1

— —1—_&t(eg(xt,t) — /1 —a;Vy,log fs(ylx:))

fo(yIxe)

EO (Xtr t)

Dhariwal & Nichol (2021), Diffusion Models Beat GANs on Image Synthesis

Thus, a new classifier-guided predictor €, would take the form as following,
€g(x¢,t) = €g(z,t) — /1 — @V, log fis(y|x¢)

To control the strength of the classifier guidance, we can add a weight w to
the delta part,

€9(x¢,t) = €a(xt,t) — /1 — ar wVx, log fs(y|xt)

The resulting ablated diffusion model (ADM) and the one with additional
classifier guidance (ADM-G) are able to achieve better results than SOTA
generative models (e.g. BigGAN).

1 . .
Vz, log pg(z) = —ﬁﬁa(iﬂz) Original Paper notation
- U

Ve, log(pe(xt)pe(y|ze)) = Ve, log pe(xt) + Vi, log ps(y|xe)

1
= —ﬁfv(ﬂ%) + Vg, log py(ylze) 26

Conditioned Generation

Classifier Guided Diffusion

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (pg(z;), Xo(z¢)), classi-
fier f,(y|z+), and gradient scale s.

Input: class label y, gradient scale s
x7 < sample from N(0, 1)
for all £ from 7" to 1 do
Ky Y #B(Q"t): E@(mt)
x¢—1 + sample from N (u + sX V,, log fy (y| 1), X)
end for
return z

Algorithm 2 Classifier guided DDIM sampling, given a diffusion model eg (), classifier fy(y|z¢),
and gradient scale s.

Input: class label y, gradient scale s
x7 4+ sample from N(0,I)
for all ¢ from 7" to 1 do

[€ < €g(xt) — V1 — &y Vi, log fs (y|ze)

- Ti—+/1—@€ - A ——
Ty (—\/(l‘; 1 (#)“r\/l*(h 1€ ixt_vl at@+ ll—ét_lé q
\a Va
end for t t ¢
return z

Fig. 7. The algorithms use guidance from a classifier to run conditioned generation with DDPM
and DDIM. (Image source: Dhariwal & Nichol, 2021])

Additionally with some modifications on the U-Net
architecture, Dhariwal & Nichol (2021) showed
performance better than GAN with diffusion models.

The architecture modifications include larger model
depth/width, more attention heads, multi-resolution
attention, BigGAN residual blocks for
up/downsampling, residual connection rescale by
1/+/2 and adaptive group normalization (AdaGN).

27

Classifier-Free Guidance

Without an independent classifier fy, it is still possible to run conditional
diffusion steps by incorporating the scores from a conditional and an
unconditional diffusion model (Ho & Salimans, 2021).

Let unconditional denoising diffusion model py (x) parameterized through a
score estimator €4 (x;,t) and the conditional model py (x|y) parameterized
through €4 (x¢,t,y).

These two models can be learned via a single neural network. Precisely, a
conditional diffusion model pg (X|y) is trained on paired data (x,y), where the
conditioning information y gets discarded periodically at random such that
the model knows how to generate images unconditionally as well, i.e.

€9(X¢, t) = €g(Xp, t,y = 0).

Ho & Salimans, (2021), Classifier-Free Diffusion Guidance

Nichol, Dhariwal & Ramesh, et al. (2022), GLIDE: Towards Photorealistic Image
Generation and Editing with Text-Guided Diffusion Models

Conditioned Generation

The gradient of an implicit classifier can be represented with conditional and
unconditional score estimators. Once plugged into the classifier-guided
modified score, the score contains no dependency on a separate classifier.

Vi, log p(y|x:) = Vi, log p(x:|y) — V, log p(x;)

= ! ((t) (t))
€g(x €g(x
ﬁ iy ,y ty\
— 6,,{){,.&3/) = E.u(X:-f-!I) vi—aru C”x; l(i’!s’{[-’(!/,xt)

— Eﬂ(xt1t1y) + w(£9(xt:t7 y) - Eg(xt,t))
= (w+ 1)es(xt,t,y) — wea(xt, t)

Their experiments showed that classifier-free guidance can achieve a good
balance between FID (distinguish between synthetic and generated images)
and IS (quality and diversity).

The guided diffusion model, GLIDE (Nichol, Dhariwal & Ramesh, et al.
2022), explored both guiding strategies, CLIP guidance and classifier-
free guidance, and found that the latter is more preferred. They
hypothesized that it is because CLIP guidance exploits the model with
adversarial examples towards the CLIP model, rather than optimize the
better matched images generation. 28

Conditioned Generation

Classifier-Free Guidance

Algorithm 1 Joint training a diffusion model with classifier-free guidance

Require: p,,cona: probability of unconditional training

1: repeat c

2 (x,¢) ~ p(x,c) > Sample data with conditioning from the dataset lassifier-f , - _ =
) - e ’ -) tl =

3 ¢ < & with probability pyncona > Randomly discard conditioning to train unconditionally C aS_SI e ree. 9”'da"°e 6? _(ZA c). (S€p(xe, L,y))_

4 A~p(\) > Sample log SNR value 233510] classifier 810 classifier guidance?t Z2 &

5: e ~N(0,I) s = U

6: Z)\ = Q)X + O)\€ > Corrupt data to the sampled log SNR value

7 Take gradient step on V ||€s(z, ¢) — €| > Optimization of denoising model

8: until converged

Algorithm 2 Conditional sampling with classifier-free guidance

Require: : guidance strength
Require: c: conditioning information for conditional sampling

Require: Ap: increasing log SNR sequence with Ay = Ay, A7 = Anax Vi log p(y|x:) = Vx, log p(x:|y) — V, log p(x:)

l: Zq ~ N(O, I) 1

2: foFt=1,...,1 40 = (Eﬂ(xtat: y) — eﬂ(xtat))
> Form the classifier-free guided score at log SNR)\, V1—a

3 & = (1 +w)eg(zs, ¢) — weg(z:) €o(xt,t,y) = €g(xs,t,y) — v 1 — &y wVy, log p(y|x;)
> Sampling step (could be replaced by another sampler, e.g. DDIM) = eg(xs,t,y) + w(€p(xe, t,y) — €p(xs, 1))

4:_, Xy = (2 — ?)\tet)/a)\L ~ > _—— o - = (w —;—,1),53()(t,y) — ’;JG,Q(X t) |

S Zt4l ™ N([L,\£+1|)\t(zt,xt)a (U,\Hlu) (UA,|,\H1))ift < T else z¢+1 = X4 t4 Y -

6: end for

7: return zp g 29

Speed up Diffusion Model Sampling

It is very slow to generate a sample from DDPM by following the Markov chain of the reverse diffusion process, as T can
be up to one or a few thousand steps. One data point from Song et al. 2020: “For example, it takes around 20 hours to
sample 50k images of size 32 x 32 from a DDPM, but less than a minute to do so from a GAN on an Nvidia 2080 Ti GPU.”

Fewer Sampling Steps (DDIM, IDDPM)

» One simple way is to run a strided sampling schedule (Nichol & Dhariwal,
2021) by taking the sampling update every [T /S] steps to reduce the
process from T to S steps. The new sampling schedule for generation is
{t1,72, ..., T} Where 7, <1, < - €[1,T]and S<T.

<T5

» For another approach, let’s rewrite q,(x;_1|X;, X() to be parameterized
by a desired standard deviation g, according to the nice property:

Xt1 = V@ 1Xo+ /1 — & 1€ 1
—_ _]
= 4/ a;_1X9 + \/1 — Qg1 — O0;€; + O4€

— (¥
- Xt — Vl—a,c’ff'(x,) _ 2 (1)
at_l(—) - \/1 — Qg1 — 05y (%) + o€
Qi
1 —
XO=\/7—t(Xt_\/1_atEt)

Song et al, Denoising Diffusion Implicit Models, 2021

Nichol & Dhariwal, Improved Denoising Diffusion Probabilistic Models, 2021

qa(xt—llxt‘) Xo) =
N (x¢-15 v/ at—l(

where the model egt)() predicts the €; from x,.

X —

V1-— ate xt)
9) \/l—atl—af)(xt),afl)

a

Recall that in q(x;_1|X¢, Xo) = N (X¢_1; Fi(Xs, Xo), B 1), therefore we have:

~ 1—ai

ﬁt:gf: - Bt = Page 16

1—ay
Let 67 = 71 - B, such that we can adjust n € R* as a hyperparameter to
control the sampling stochasticity. The special case of n = 0 makes the
sampling process deterministic. Such a model is named the denoising
diffusion implicit model (DDIM; Song et al., 2020). DDIM has the same
marginal noise distribution but deterministically maps noise back to the
original data samples.

30

Fewer Sampling Steps (DDIM, IDDPM)

» During generation, we don’t have to follow the whole chaint =1, ..., T,
but rather a subset of steps. Let’'s denote s < t as two steps in this
accelerated trajectory. The DDIM update step is:

qU,s<t(X.~ |xt7 xo) =

— ()
xX; — v 1—aye,’ (x

Qg

» While all the models are trained with T = 1000 diffusion steps in the
experiments, they observed that DDIM (n = 0) can produce the best
quality samples when S is small, while DDPM (n = 1) performs much
worse on small S.

+ DDPM does perform better when we can afford to run the full reverse
Markov diffusion steps (S = T = 1000)). With DDIM, it is possible to train
the diffusion model up to any arbitrary number of forward steps but only
sample from a subset of steps in the generative process.

Speed up Diffusion Model Sampling

CIFAR10 (32 x 32) CelebA (64 x 64)
S 10 20 50 100 1000 10 20 50 100 1000

0.0 | 1336 6.84 4.67 4.16 404 | 1733 1373 917 6.53 3:51
02| 1404 7.11 4.77 4.25 4.09 17.66 1411 9.1 6.79 3.64
T 05| 1666 835 5.25 4.46 4.29 19.86 16.06 11.01 8.09 4.28
1.0 | 41.07 1836 8.01 5.78 473 | 3312 26.03 1848 1393 598

G | 36743 13337 3272 9.9 317 | 29971 183.83 7171 4520 3.26

Fig. 8. FID scores on CIFAR10 and CelebA datasets by diffusion models of
different settings, including DDIM(n = 0) and DDPM(4). (Image source:
Song et al., 2020)

Compared to DDPM, DDIM is able to:
1. Generate higher-quality samples using a much fewer number of steps.

2. Have “consistency” property since the generative process is
deterministic, meaning that multiple samples conditioned on the same
latent variable should have similar high-level features.

3. Because of the consistency, DDIM can do semantically meaningful
interpolation in the latent variable.

31

Speed up Diffusion Model Sampling

Algorithm 2 Progressive distillation

Progressive Distillation Algorithm 1 Standard diffusion training
Require: Model X4(z;) to be trained
Progressive Distillation (Salimans & Ho, 2022) is a method for distilling Require: Data set D

trained deterministic samplers into new models of halved sampling steps. Redquire: Loss weight function w()
* The student model is initialized from the teacher model and denoises
towards a target where one student DDIM step matches 2 teacher

steps, instead of using the original sample x, as the denoise target. while not converged do

x~7D > Sample data

* In every progressive distillation iteration, we can half the sampling steps. t ~UI0,1] > Sample time
Y prog piing step e~ N(0,I) > Sample noise

t=1 € € € z; = auX + o e > Add noise to data

B
Z3/4 = f(z15m)

Distillation

J
=

2172 = fl@s/a; n){v \ 4 X > Clean data is target for X
b | Distillation Fx = f(zi;0) A = log[a? /o2 > log-SNR
Zy/4 = f(zuz:,??){ [te= w()\t)HX ool > Loss

\ 4 0 & 0 —yVoLg > Optimization
Distillation end while

X = f(Z1/4;77){

Require: Trained teacher model X,,(z;)

Require: Data set D

Require: Loss weight function w()

Require: Student sampling steps NV
for K iterations do

@ «n &> Init student from teacher
while not converged do

x~D

t=1/N, i~ Cat[l,2,...,N]

e~ N(0,I)

Z: = 44X + Ot€
2 steps of DDIM with teacher
t=t-05/N, t'=t-1/N
[j Zy = a,yfcn(zt) + gti(Zt — atfc,,(zt))
Zpr = Ctgf'xn(zt') + (zt’ - at'xn(zt’))

—x= g::—:%% b Teacher X target
= logla} /a7
Le — w(A)[X Exo (20|13
0«0 —vVeLlo student model
end while
n+0 > Student becomes next teacher
N < N/2 > Halve number of sampling steps

t=0 X X X end for
Fig. 9. Progressive distillation can reduce the diffusion sampling steps by Fig. 10. Comparison of Algorithm 1 (diffusion model training) and Algorithm
half in each iteration. (Image source: Salimans & Ho, 2022) 2 (progressive distillation) side-by-side, where the relative changes in

progressive distillation are highlighted in green. (Image source: Salimans &

Tim Salimans, Jonathan Ho, “Progressive Distillation for Fast Sampling of Diffusion Ho, 2022)
Models,” 2022.

32

Speed up Diffusion Model Sampling

Consistency Models

Consistency Models (Song et al. 2023) learns to map any intermediate noisy
data points x;, t > 0 on the diffusion sampling trajectory back to its origin x,
directly.

It is named as consistency model because of its self-consistency property
as any data points on the same trajectory is mapped to the same origin.

+ Given a trajectory {x;|t € [¢,T]}, the consistency function f is defined as
f: (%4, t) » x. and the equation f(x.,t) = f(x,t") = x. holds true for all
t,t' € [¢,T]. When t = ¢, f is an identify function.

* The model can be parameterized as follows, where cgyi, (t) and cqy(t)

functions are designed in a way that cqp(€) = 1, Cour(€) = 0: Fig. 11. Consistency models learn to map any data point on the trajectory

back to its origin. (Image source: Song et al., 2023)
fﬂ(x, t) - Cskip(f)x + Cout (t)FH(X, f)

v Fy(x,t) : a free-form deep neural network, Output has the same « Itis possible for the consistency model to generate samples in a single
dimensionality as x. step, while still maintaining the flexibility of trading computation for better
quality following a multi-step sampling process.

Yang Song, et al., “Consistency Models,” 2023 33

Speed up Diffusion Model Sampling

Consistency Models

The paper introduced two ways to train consistency models:

1) Consistency Distillation (CD) 2) Consistency Training (CT)

+ Distill a diffusion model into a consistency model by minimizing the * The other option is to train a consistency model independently. Note that
difference between model outputs for pairs generated out of the same in CD, a pre-trained score model s (x,t) is used to approximate the
trajectory. This enables a much cheaper sampling evaluation. ground truth score Vlogp,(x) but in CT we need a way to estimate this

. The consistency distillation (CD) loss is: :Zoiexfi?ctlon and it turns out an unbiased estimator of Vlogp,(x) exists

t2 "
N — Y _)
Lep(0,075¢) = E[A(En)d(fo(xe,,,s tnsr), fo (X3, tn)] » The consistency training (CT) loss is defined as follows:
)AC;:‘ = xtr“l - (tn - tn_}.l)(l)(Xf“. 19 !;1 (5 [(j))

L:gT(ea 9;545) — E[A(tn)d(.f’f(x ttnt12, tnt1), fo (x+tn2, tn)]
where z € N(0,1)

- ®(.;¢) is the update function of a one-step ODE (Ordinary differential equation) solver;
- n~UJ[1,N — 1] has a uniform distribution over 1, ..., N — 1;

- The network parameters 6~ is EMA(Exponential Moving Average) version of 8 which greatly
stabilizes the training (just like in DQN or momentum contrastive learning);

- d(.,.) is a positive distance metric function that satisfies vx,y: d(x,y) < 0 and d(x,y) = 0 if and
only if x =y such as [,, [; or LPIPS (learned perceptual image patch similarity) distance;

- 1(.) € R* is a positive weighting function and the paper sets A(t,,) = 1. ”

Speed up Diffusion Model Sampling

Consistency Models

According to the experiments in the paper, they found,

« Heun ODE solver works better than Euler’s first-order solver, since * Smaller N leads to faster convergence but worse samples, whereas
higher order ODE solvers have smaller estimation errors with the same N. larger N leads to slower convergence but better samples upon
convergence.

* Among different options of the distance metric function d(.), the LPIPS
metric works better than [, and [, distance.

60 10 | 10 60
LPIPS, Heun, N=9

w— == LPIPS, Euler, N =50

==+ CT(N=50,u=0.99)

S I
50 — G —— LPIPS, Heun, N=50 9 —— LPIPS, Heun, N =12 so M ——. CT(N=80,u=0.99)
=il RIS 8 == LPIPS, Euler, N =80 8 = LPIPS, Heun, N =18 \ ~=: CT(N=120,u=0.99)
40 —— LPIPS, Heun, N =80 —— LPIPS, Heun, N = 36 40 A —— CT (adaptive N and 4)
- o T — = LPIPS, Euler, N =120 o 7 —— LPIPS, Heun, N = 60 \
030 o s =]
= 6 n ——— LPIPS, Heun, N =120 - g
L \
20 5 ’ _____ 5
10 i s St oL T i
0 ’ 3 3 ’
0 b 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 20 40 60 80
Training iterations (x10000) Training iterations (x10000) Training iterations (x10000) Training iterations (x10000)
(a) Metric functions in CD. (b) Solvers and N in CD. (c¢) N with Heun solver in CD. (d) Adaptive NV and p in CT.

Fig. 12. Comparison of consistency models' performance under different configurations.

The best configuration for CD is LPIPS distance metric, Heun ODE solver, and N = 18. (Image source: Song et al., 2023) 35

Latent Variable Space

Latent diffusion model (LDM)

Semantic Compression

Latent diffusion model (LDM; Rombach & Blattmann, et al. 2022) runs the — 80 =

diffusion process in the latent space instead of pixel space, making training 7 ‘, — Generative Model:

cost lower and inference speed faster. 5 60 = Latent Diffusion Model (LDM)

+ Itis motivated by the observation that most bits of an image contribute to g 40 .
perceptual details and the semantic and conceptual composition still 't'é" Perceptual Compression
remains after aggressive compression. Z 20 —s Autoencoder+GAN

* LDM loosely decomposes the perceptual compression and semantic A
compression with generative modeling learning by first trimming off pixel- 0 B e ae
level redundancy with autoencoder and then manipulate/generate T 5
semantic concepts with diffusion process on learned latent. ’

Rate (bits/dim)

» The perceptual compression process relies on an autoencoder model. E ﬂ
An encoder € is used to compress the input image x € R#*W>3 to a »
smaller 2D latent vector z = £(x) € RY"*¢, where the downsampling rate
f=H/h=W/w=2™ meN. Then a decoder D reconstructs the images Fig. 8. The plot for tradeoff between compression rate and
from the latent vector, ¥ = D(z). distortion, illustrating two-stage compressions - perceptural

P - and semantic comparession. (Image source: Rombach &
* The paper explored two types of regularization in autoencoder training Blattmann, et al. 2022)
to avoid arbitrarily high-variance in the latent spaces.
* KL-reg: A small KL penalty towards a standard normal distribution over
the learned latent, similar to VAE. VAE : https://lilianweng.github.io/posts/2018-08-12-vae/
* VQ-reg: Uses a vector quantization layer within the decoder, like VQVAE : https://lilianweng.github.io/posts/2018-08-12-vae/#vqg-vae-and-vg-vae-2

VQVAE but the quantization layer is absorbed by the decoder. 36

Latent Variable Space

. . Perceptual Semantic compression
Latent diffusion model (LDM) compression Diffusion & Denoising
> The diffusion and denoising processes happen on the latent vector z. \ @ Latent Space) 6onditionina
+ The denoising model is a time-conditioned U-Net, augmented with the E M Diffusion Process Eemantiq
cross-attention mechanism to handle flexible conditioning information for P Benoisi N N Ma -
image generation (e.g. class labels, semantic maps, blurred variants of an 2 antelisilnte) NS T e
image).
entations
* The design is equivalent to fuse representation of different modality into
the model with cross-attention mechanism. D
+ Each type of conditioning information is paired with a domain-specific 27
encoder 74 to project the conditioning input y to an intermediate Pixel Space , VEEr s
representation that can be mapped into cross-attention component, S =4 -
. 0
1g(y) € R"*%: = o |)
m KV E «& ----
N

QKT) v denoising step crossattention switch skip connection concat

Vd
where Q) = Wg) - pi(z;), K= W(;() -19(y), V = W%,z—) - 19(y)

and W) € RPE, WO, W) € RT4r, p;(2;) € RV, 7y(y) € RM>dr

Attention(Q,K, V) = softma.x(

Fig. 14. The architecture of latent diffusion model.

* Based on image-conditioning pairs, we then learn the conditional LDM via

pi(z) € RM*de : g (flattened) intermediate representation of the UNet Lipy = Eeg@),y,emnn(0,1),t |e—€g(2¢,t, 70 (y))||g]
implementing €g .. -
where both 7, and €4 are jointly optimized.

Robin Rombach, Andreas Blattmann, et al,, “High-Resolution Image Synthesis with 37
Latent Diffusion Models,” CVPR 2022.

Scale up Generation Resolution and Quality

Cascaded Diffusion Model — Noise Conditioning Augmentation

To generate high-quality images at high resolution, Ho et al. (2021) proposed
to use a pipeline of multiple diffusion models at increasing resolutions.

* Noise conditioning augmentation between pipeline models is crucial to
the final image quality, which is to apply strong data augmentation to the
conditioning input z of each super-resolution model pg(x|z). The
conditioning noise helps reduce compounding error in the pipeline setup.

» U-net is a common choice of model architecture in diffusion modeling for
high-resolution image generation.

Ho et al. (2021), Cascaded Diffusion Models for High Fidelity Image
Generation

256256

Class ID = 213
“Irish Setter”
o —
Model 1

Fig. 15. A cascaded pipeline of multiple diffusion models at increasing
resolutions. (Image source: Ho et al. 2021])

» They found the most effective noise is to apply Gaussian noise at low

resolution and Gaussian blur at high resolution.

In addition, they also explored two forms of conditioning
augmentation that require small modification to the training process.
Note that conditioning noise is only applied to training but not at inference.

1) Truncated conditioning augmentation stops the diffusion process
early at step t > 0 for low resolution.

2) Non-truncated conditioning augmentation runs the full low
resolution reverse process until step 0 but then corrupt it by
z.~q(X¢|Xo) and then feeds the corrupted z;s into the super-resolution
model.

38

Scale up Generation Resolution and Quality

Cascaded Diffusion Model — Noise Conditioning Augmentation

Class ID = 933
“Cheeseburger”
*——>

T T

I - - > .
()2 Mk (%)% Mg (%)% 2 x Mk
(5)2, My
5. 64 %64
32x3:
al Class
c d'T"S : —— B —— | Conditional
onditiona o SuperFis

(52,2 x M,

N2, 2 x M, (xtfl’

256 % 256

Class
Conditional

Super-Res

Fig 3. The U-Net architecture used in each model of a
CDM pipeline.

The first model is a class-conditional diffusion model
that receives the noisy image x; and the class label y
and as input. (The class label y and timestep t are
injected into each block as an embedding, not depicted
here).

The remaining models in the pipeline are class-
conditional super-resolution models that receive x,, y,
and an additional upsampled low-resolution image z as
input. The downsampling/upsampling blocks adjust the
image input resolution N x N by a factor of 2 through
each of the K blocks. The channel count at each block is
specified using channel multipliers My, M5, ..., My, and the
upsampling pass has concatenation skip connections to
the downsampling pass.

Fig 4. Detailed CDM pipeline for generation of class
conditional 256 x 256 images. The first model is a class-
conditional diffusion model, and it is followed by a
sequence of two class-conditional super-resolution
diffusion models. Each model has a U-Net architecture
as depicted in Fig. 3.

39

Scale up Generation Resolution and Quality

unCLIP

The two-stage diffusion model unCLIP (Ramesh et al. 2022) heavily utilizes
the CLIP text encoder to produce text-guided images at high quality.

Given a pretrained CLIP model ¢ and paired training data for the diffusion
model, (x,y), where x is an image and y is the corresponding caption, we
can compute the CLIP text and image embedding, ci(y) and c¢!(x),
respectively. The unCLIP learns two models in parallel:

v" A prior model P(c!|y) : outputs CLIP image embedding c' given the text y.

v' Adecoder P(x|c’, [y]) : generates the image x given CLIP image

embedding ¢’ and optionally the original text y.

These two models enable conditional generation, because

P(x]y) = P(x,c'|y) = P(x|c’,y) P(c’ly)

~
¢! is deterministic given x

Ramesh et al. 2022, Hierarchical Text-Conditional Image Generation with

CLIP Latents

)

CLIP model c

y :emngoder
“a corgi
playing a
flame
throwing

trumpet”

decoder

prior

Fig. 12. The architecture of unCLIP. (Image source: Ramesh et al. 2022])

unCLIP follows a two-stage image generation process:

1) Given a text y, a CLIP model c is first used to generate a text embedding
ct(y). Using CLIP latent space enables zero-shot image manipulation via
text.

2) A diffusion or autoregressive prior P(c'|y) processes this CLIP text
embedding to construct an image prior and then a diffusion decoder
P(x|c}, [y]) generates an image, conditioned on the prior. This decoder
can also generate image variations conditioned on an image input,
preserving its style and semantics. 40

Imagen

Instead of CLIP model, Imagen (Saharia et al. 2022) uses a pre-trained large
LM (i.e. a frozen T5-XXL text encoder) to encode text for image generation.
There is a general trend that larger model size can lead to better image
quality and text-image alignment. They found that T5-XXL and CLIP text
encoder achieve similar performance on MS-COCO, but human evaluation
prefers T5-XXL on DrawBench (a collection of prompts covering 11
categories).

When applying classifier-free guidance, increasing w may lead to better
image-text alignment but worse image fidelity. They found that it is due to
train-test mismatch, that is saying, because training data x stays within the
range [-1,1], the test data should be so too. Two thresholding strategies are
introduced:

+ Static thresholding: clip x prediction to [-1,1]

« Dynamic thresholding: at each sampling step, compute s as a certain
percentile absolute pixel value; if s>1, clip the prediction to [—s, s] and
divide by s.

Saharia et al. 2022, Photorealistic Text-to-Image Diffusion Models with Deep
Language Understanding

Scale up Generation Resolution and Quality

Imagen modifies several designs in U-net to make it efficient U-Net.

» Shift model parameters from high resolution blocks to low resolution by
adding more residual locks for the lower resolutions;

« Scale the skip connections by 1/+/2

* Reverse the order of downsampling (move it before convolutions) and
upsampling operations (move it after convolution) in order to improve the
speed of forward pass.

They found that noise conditioning augmentation, dynamic
thresholding and efficient U-Net are critical for image quality, but scaling
text encoder size is more important than U-Net size.

41

Scale up Generation Resolution and Quality

Frozen Text Encoder
Text Embedding
Y
Text-to-Image
Diffusion Model

164 x 64 Image

Super-Resolution
Diffusion Model

Y

Super-Resolution
Diffusion Model

l

1024 x 1024 Image

256 x 256 Image

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”

Figure A.4: Visualization of Imagen. Imagen uses a frozen text encoder to
encode the input text into text embeddings. A conditional diffusion model
maps the text embedding into a 64 x 64 image. Imagen further utilizes text-
conditional super-resolution diffusion models to upsample the image,
first 64 x 64 — 256 x 256, and then 256 x 256 — 1024 x 1024.

l

Conv
kernel _size=3x3

channels=128

'

’ DBlock 256x

Y

‘ DBlock 128x

'

’ DBlock 64x

¥

‘ DBlock 32x

Y

‘ DBlock 16x

Y

UBlock 16x

¥

UBlock 32x

Y

UBlock 64x

1

L

UBlock 256x

Y

Dense

|
|
|
[otock 1m0
|
1

=]

l

256* Image

Efficient U-Net architecture

for 642 — 2562

Y

GroupNorm

swish

Conv
kernel_size=3x3

channels=channels

r

GroupNorm

swish

Conv
kernel_size=1x1

channels=channels

Conv
kernel_size=3x3

channels=channels

v

Efficient U-Net ResNetBlock.

The ResNetBlock is used both by the
DBlock and UBIlock. Hyperparameter
of the ResNetBlock is the number of

channels: int.

42

Scale up Generation Resolution and Quality

Previous DBlock

|

Conv
kernel_size=3x3
1 strides=stride

channels=channels

Conditional Embeddings

l e
(e.g., Time, Pooled Text Embeddings) ~ | CO N

Full Contextual Text Embeddings —

Efficient U-Net DBlock.

Hyperparameters of DBlock are: the stride of the block if there is
downsampling stride: Optional[Tuple[int, int]], number of ResNetBlock per
DBlock numResNetBlocksPerBlock: int, and number of channels channels:
int. The dashed lined blocks are optional, e.g., not every DBlock needs to
downsample or needs self-attention

Previous UBlock

Skip Connection from DBlock

Conditional Embeddings —» CombineEmbs

NetRlock
€

SelfAttention

Conv
kernel_size=3x3
strides=stride

channels=channels

l

Efficient U-Net UBlock.

Hyperparameters of UBlock are: the stride of the block if there is
upsampling stride: Optional[Tuple[int, int]], number of ResNetBlock per
DBlock numResNetBlocksPerBlock: int, and number of channels
channels: int. The dashed lined blocks are optional, e.g., not every
UBIlock needs to upsample or needs self-attention.

43

Model Architecture

There are two common backbone architecture choices for diffusion models:
U-Net and Transformer.

1 64 64
U-Net 128 64 64 2
U-Net (Ronneberger, et al. 2015) consists of a downsampling stack and an input outout
upsampling stack. imat%: b | bt et b segr:nentation
al e &8 map
» Downsampling: Each step consists of the repeated application of two 3x3 % % % g =
convolutions (unpadded convolutions), each followed by a ReLU and a S E
2x2 max pooling with stride 2. At each downsampling step, the number of ¥
. 128 128
feature channels is doubled. 256 128
* Upsampling: Each step consists of an upsampling of the feature map _
followed by a 2x2 convolution and each halves the number of feature ALK N E B
channels. M]l tﬁ %
» Shortcuts: Shortcut connections result in a concatenation with the (518 288
corresponding layers of the downsampling stack and provide the essential P ‘é‘ 1 = conv 3x3, ReLU
high-resolution features to the upsampling process. - < = =+ copy and crop
— > > ¥ max pool 2x2
1024 g5 B 4 up-conv 2x2
g_‘é_ =» conv 1x1

Fig. 17. The U-net architecture. Each blue square is a feature map with the
number of channels labeled on top and the height x width dimension
labeled on the left bottom side. The gray arrows mark the shortcut
connections. (Image source: Ronneberger, 2015) 44

Olaf Ronneberger et al., “U-Net: Convolutional Networks for Biomedical
Image Segmentation,”, 2015

Model Architecture

ControlNet

To enable image generation conditioned on additional images for
composition info like Canny edges, Hough lines, user scribbles, human
post skeletons, segmentation maps, depths and normals, ControlNet
(Zhang et al. 2023) introduces architectural changes via adding a

“sandwiched” zero convolution layers of a trainable copy of the original c
model weights into each encoder layer of the U-Net. J— i ;
: luti |
Precisely, given a neural network block Fg(+), ControlNet does the following: . : ZeT0 corvolo |
x : >
l d : ? .
- First, freeze the original parameters 6 of the original block [neural network] [neural network | ! [b } |
: |
+ Clone it to be a copy with trainable parameters 6, and an additional block block (locked) § : ;
conditioning vector c. l | zero convolution | |
» Use two zero convolution layers, denoted as Zy_, (.;.) and Zg_, (.;.), which y 5 ' _______________ :
is 1x1 conv layers with both weights and biases initialized to be zeros, to Ye ControlNet
connect these two blocks. Zero convolutions protect this back-bone by () Befre (b) After

eliminating random noise as gradients in the initial training steps.
* The final output is: Fig. 18. The ControlNet architecture. (Image source: Zhang et al. 2023)

ye = Fo(x) + 2o, (Fo.(x + Zg.,(c)))

Lvmin Zhang et al., “Adding Conditional Control to Text-to-lmage Diffusion
Models,” 2023

45

Model Architecture

Condition
l
ControlNet zero convolution
Prompt Input r.’-]FE
| ! Prompt&Time T
* (a) Stable Diffusion AfH = ._15._| lefu3|on L E(0f|: Stable Diffusion?| latent [mﬁ_ (" SD Encoder Block_1 B_. 5 ! [SD Encoder Block_1 ‘ §
UNet)2| IRHH4E SRI5I0] ‘S 7HsSH SAHR I} “BIZI SAHR(RIg4)“oz | T 6464 | 6464 (trainable copy)
[= ——————
LH=C}. _[D Encoder Block 2 a ‘ [SDEncoderBlock 2 | ,
+ E7I SAES (7R CO[EMOIM SHET WIS RIAIS BASD, St JhsEt e 5232 | 3252 tainable copy J
StA= I [I
AEE IHHE SHE stEok= Ol AFEE | [SD Encoder Block 3 |, l SD Encoder Block 3]
“ » —_———— lox16 16%16 (trainabl
. St& 7H5S EAMR D A7 ZAHR | 0f7HH4= “zero convolution” 20|02 HZ [Tipe EncoderEI —— B . “aijla e
EI 0|7-|O ControlNet Z3|Q1Q|3 0| eH 2 XML, M2 XH0|stsEmf | SD Encoder a .‘xS SD Encoder Block_4| _
SHEAE| O|0|2S HESH= 8k 7|HHel Block 4 8x8 |88 (tramable COPY}J
0||:|| & 20|23 EEok= ofs 7|3 L
 SD Middle ﬂ“' SD I\'ilddle Block
| Block 8x8 J st(rramable copy)
—= Dele . zem convolution
coder !
Block 48x=8 < zero convolution %3
—e
[8D Decoder Block 3 | _ TG
—{ 16%16 8 x3 zero convolution =3
[= Dec;l;if;? IDCk—zﬁ *Fe—+ zero convolution *3
| SDDecoderBlock 1 | x3— - zeroconvolution | x3
|.
Output
(a) Stable Diffusion (b) ControlNet
H59| ¢i5l4, ControlNet 22 0|0|X|' 4y (feat. Stable Diffusion) Z7 : https://huggingface.co/blog/controlnet

https://modulabs.co.kr/blog/controlnet-stable-diffusion/ 16

Model Architecture

Diffusion Transformer (DiT)

Transformer architecture can be easily scaled up and it is well known for that.
This is one of the biggest benefits of DiT as its performance scales up with
more compute and larger DiT models are more compute efficient according

Diffusion Transformer (DiT; Peebles & Xie, 2023) for diffusion modeling
operates on latent patches, using the same design space of LDM (Latent

Diffusion Model)]. DIiT has the following setup: 4 N\
. . . . Scale qa——z
1) Take the latent representation of an input z as input to DiT. Noise ¥)
2) “Patchify” the noise latent of size I x I x C into patches of size p and 32x32x4 32x32x4 Bt
convert it into a sequence of patches of size (I1/p)?. T ¢ e ; | Yorls
inear and Resha e
3) Then this sequence of tokens go through Transformer blocks. They are g Shepe Scale.’ St
exploring three different designs for how to do generation conditioned on v o Layer Norm
contextual information like timestep t or class label c. Among three y : /
designs, adaLN (Adaptive layer norm)-Zero works out the best, better
than in-context conditioning and cross-attention block. The scale and N x DiT Block e 221
shift parameters, y and 3, are regressed from the sum of the embedding !
vectors of t and c¢. The dimension-wise scaling parameters « is also I ! 5 Multi-Head
regressed and applied immediately prior to any residual connections Patchify = Embed i
within the DiT block. | — L
4) The transformer decoder outputs noise predictions and an output Noised Tineetont ,_aye,'Nom, MLP
diagonal covariance prediction. Latent ! — I
32x32x4 Label y

William Peebles and Saining Xie, “Scalable Diffusion Models with
Transformers,” 2023

to the experiments.

Latent Diffusion Transformer

\ Input Tokens

Conditioning)

DiT Block with adaLN-Zero

£X : https://huggingface.co/blog/controlnet 47

Pros

Tractability and flexibility are two conflicting objectives in generative
modeling. Tractable models can be analytically evaluated and cheaply fit
data (e.g. via a Gaussian or Laplace), but they cannot easily describe the
structure in rich datasets. Flexible models can fit arbitrary structures in data,
but evaluating, training, or sampling from these models is usually expensive.

Diffusion models are both analytically tractable and flexible

Cons

Diffusion models rely on a long Markov chain of diffusion steps to
generate samples, so it can be quite expensive in terms of time and
compute.

New methods have been proposed to make the process much faster, but the
sampling is still slower than GAN.

