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Abstract . 7|29 SterGAN2c> texture sticking 0|2H= X2 7tX|11 YL. 0|0|X|=

TEHMOZ SH5E|0{0F 5h=Hl(ex. E0il siFot= |X[0 =E0| U0{OF &),
StyleGAN °| Generator= 0|0 X|9] 2t EZIEE hierarchical $AIOZ &t
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* We observe that despite their hierarchical convolutional nature, the
synthesis process of typical generative adversarial networks
depends on absolute pixel coordinates in an unhealthy manner.
This manifests itself as, e.g., detail appearing to be glued to image

coordinates instead of the surfaces of depicted objects. ) ';;elrﬁ?'_? t'iﬂﬁfﬁggj mggfﬁé’\lﬁg gg%itgﬁg#%léh [H[ e 5t
+ We trace the root cause to careless signal processing that causes 7| 2|5l hiearchicalstA| 00| X|2 &Mt 2 9IE 2 glias-free 8t network

aliasing in the generator network. Interpreting all signals in the Motk

network as continuous, we derive generally applicable, small

architectural changes that guarantee that unwanted information . 71 Z1}, translation0|Lt rotation0| CisH equivarianceZ PHE5IH O,

cannot leak into the hierarchical synthesis process. videoL} animationS Or=7|0f| MlsiCtT 2 £ 9|2

* The resulting networks match the FID of StyleGANZ2 but differ
dramatically in their internal representations, and they are fully
equivariant to translation and rotation even at subpixel scales. Our
results pave the way for generative models better suited for video
and animation.
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Random latent walk using directions from StyleCLIP, GANSpace, and SeFa.
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1. Introduction

Texture Sticking

StyleGAN2 Ours

+— latent interpolation —

+— latent interpolation —

Central

Averaged

Figure 1: Examples of “texture sticking”. Left: The average of images generated from a small
neighborhood around a central latent (top row). The intended result is uniformly blurry because
all details should move together. However, with StyleGAN2 many details (e.g., fur) stick to the
same pixel coordinates, showing unwanted sharpness. Right: From a latent space interpolation
(top row), we extract a short vertical segment of pixels from each generated image and stack them
horizontally (bottom). The desired result is hairs moving in animation, creating a time-varying field.
With StyleGAN?2 the hairs mostly stick to the same coordinates, creating horizontal streaks instead.



StyleGAN3 : Alias-Free Generative Adversarial Networks

1. Introduction

> 7|Z& StyleGAN generator: coarse, low-resolution feature|A{ A|Zt5H04

Texture Sticking upsamplingdtil, convolution2 2 localdtA| mixingdtil, non-linear
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Figure 1: Examples of “texture sticking”. Left: The average of images generated from a small g+ US. interpolation = O|0|X|E 2, StyleGANZQI' CtE2A 30[M=

neighborhood around a central latent (top row). The intended result is uniformly blurry because tr‘anslat|on0ﬂ et XFAAZA| interpolation B2 201 g £ QS
all details should move together. However, with StyleGAN2 many details (e.g., fur) stick to the

same pixel coordinates, showing unwanted sharpness. Right: From a latent space interpolation + latent interpolationS &olf A{HA 2|2 transformationS THSUS [, O]
(top row), we extract a short vo':rtica] segr_nent'of pixe'ls fr‘om gach ‘generate('i imagfe and stapk them transformationO| hierarchyotH| Z& = ZA0| OfL|2t Zt feature=0| &
horizontally (bottom). The desired result is hairs moving in animation, creating a time-varying field

g ; ’ i : : i ¥ X ni T1XIS ole= 310 I-J\OIC>
With StyleGAN?2 the hairs mostly stick to the same coordinates, creating horizontal streaks instead. o plxeloﬂ DASHE|N UZBS %.I' g2 QA3
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1. Introduction

Texture Sticking
Observations
StyleGAN2 Ous oo Cwenmepin >+ O|C[47} 2= X| 947 spatial information0| FE|1 k.
_ N A “ﬂﬂgﬁ « Translation Equivariance representation0| 2 M| 2201717} 0|&
§ 2 PR 4 g W UACE

Averaged

"Our goal is an architecture that exhibits a more natural
transformation hierarchy, where the exact sub-pixel position of
each feature is exclusively inherited from the underlying coarse
Figure 1: Examples of “texture sticking”. Left: The average of images generated from a small  fegtures."

neighborhood around a central latent (top row). The intended result is uniformly blurry because

all details should move together. However, with StyleGAN2 many details (e.g., fur) stick to the

same pixel coordinates, showing unwanted sharpness. Right: From a latent space interpolation

(top row), we extract a short vertical segment of pixels from each generated image and stack them : : ;
horizontally (bottom). The desired result is hairs moving in animation, creating a time-varying field. Our goal is to make every layer of G equivariant w.r.t. the

With StyleGAN2 the hairs mostly stick to the same coordinates, creating horizontal streaks instead.  €ONtinuous signal, so that all finer details transform together with
the coarser features of a local neighborhood. If this succeeds, the
entire network becomes similarly equivariant.
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1. Introduction

Motivation and Main Problem

» Image borders

» Per-pixel noise inputs
» Positional encoding
» Aliasing

« = =22 NHX=2 0| S0[A aliasingO|
7% criticalgt issuedt! F=%fst

» network= aliasing0| 232 ZXH3H = Of
2 SE3t= 70| QU0IA BH0| g
B scale0] 7H 42 LA EX
textureZt 121%|7| =

Latent z € Z

Latent z € Z ,
Synthesis network g
Normalize Const 4x4x512

Mapping

Conv 3x3
PixelNorm

4x4|
v |

Uﬁsamﬁle

| Conv 3x3 i

ee e

(a) Traditional

§x§)

I
I
i
i
1
I
1
I
I
I
1
I
I
I
i
!
I
I
1
I
I
I
I
I
I
I
1
1
I
I
I
I
1
I
I
I
I
1
1
I
1
I
I
I
1

e

(b) Style-based generator
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1. Introduction

CNN classifier w/ global avr. pooling
Motivation and Main Problem

“To make CNN representations (before GAP)

Image borders translation equivariant (so that the final

Per-pixel noise inputs representation becomes translation invariant),

Positional encoding we need to make sure that any feature map

Aliasing that uses stride does not contain frequencies

above the Nyquist frequency.”

(Prerequisites)
Simoncelli et al. 1992
Zhang et al. 2019, Azulay et al. 2019

CNNO| Translation Equivariant Representation=
14512 aliasingO|2t= FHA10] M7|X| 22 5 F0}
I.

gonr jon
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1. Introduction

Motivation and Main Problem

% Aliasinge= 2 0|®
Image borders + Non-ideal upsampling filters (ex. nearest, bilinear, strided conv): Generator0j|A{ upsamplingS ot=
IO M low-path filteringS kX 47| MZY. = idealdtX| 22 upsampling filter IR0 2X| %2 high-
frequencyE0| A% CIsHXA aliasing0| L0{E.
..  Pointwise application nonlinearities such as ReLU: 0| £ S0 S4Lj 09 £ IESHF= reluZt JYCH
Altasing 2UX7] 20| & EIA| 17| G20 aliasing0] 2oiH

>

» Per-pixel noise inputs
» Positional encoding
>

o ESH XMAHES2 024Gt aliasingXiA] HIZE= X7t styleGAN £0t OtL|2} deep learning¥A HEIHO Z
AUMSH 28

< Aliasinge o1& ot

« 0|2%{2Z aliasing2 Nyquist-Shannon sampling theoremz SHZAE £ AZ. XXS2 StyleGAN29|
GeneratorE MSEXMO 2 2AM510] upsampling filterE pointwise nonlinearties0|A] 447|= aliasing
= ofl Aot At &

14



StyleGAN3 : Alias-Free Generative Adversarial Networks

1. Introduction

Equivariance

= ==22 0|0|X|Z H4-dot7| ot CtFet operation(ex, CNN, RelU,
Upsampling / Downsampling..)0l|A] Equivariance {O}SHC F=XSH

=13
» Generator 222 Equivariance 6tA| 2tE= 40| =22 siAlo[2tT = £
ol
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2 == 0lM X[Fok= i Z22| SEES hierarchical ot st&otA 2=
= 740]
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input2 = 4-gE output0] L2t outputs HEot At 25 B=LHH, Of
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Equivariance
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3|M = latent code z 0| A 24-4= 0|0 X|7}

ZICHH, 0|Z40] HEZ rotationd| CHsH equivariant &

15



StyleGAN3 : Alias-Free Generative Adversarial Networks

2. Equivariance via continuous signal interpretation

L N ]
=]
[ ]
L ]
L]
L N ]
® ® @ 9|0
e o 0 0

No faithful
discretization

® & o @
el @ @ o @

Figure 2: Left: Discrete representation Z and continuous representation z are related to each other
via convolution with ideal interpolation filter ¢, and pointwise multiplication with Dirac comb
[IT,. Right: Nonlinearity ¢, ReLU in this example, may produce arbitrarily high frequencies in the
continuous-domain o (z). Low-pass filtering via ¢ is necessary to ensure that Z’ captures the result.

Discrete and continuous representation of network layers Practical neural networks operate on
the discretely sampled feature maps. Consider operation F (convolution, nonlinearity, etc.) operating

on a discrete feature map: Z' = F(Z). The feature map has a corresponding continuous counterpart,
so we also have a corresponding mapping in the continuous domain: =z’ = f(z). Now, an operation
specified in one domain can be seen to perform a corresponding operation in the other domain:

f(2) = ¢ x F(III; © 2), F(Z)=1ly©f(¢s * Z), (1)

where @ denotes pointwise multiplication and s and s’ are the input and output sampling rates. Note
that in the latter case f must not introduce frequency content beyond the output bandlimit s’ /2.
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2. Equivariance via continuous signal interpretation
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2.1 Equivariant network layers

Operation f is equivariant with respect to a spatial transformation t of the 2D plane if it commutes
with it in the continuous domain: t o f = f o t. We note that when inputs are bandlimited to s/2,
an equivariant operation must not generate frequency content above the output bandlimit of s’ /2. as
otherwise no faithful discrete output representation exists.

We focus on two types of equivariance in this paper: translation and rotation. In the case of rotation
the spectral constraint is somewhat stricter — rotating an image corresponds to rotating the spectrum,
and in order to guarantee the bandlimit in both horizontal and vertical direction, the spectrum must
be limited to a disc with radius s/2. This applies to both the initial network input as well as the
bandlimiting filters used for downsampling, as will be described later.

« 2 =20|X = 271X| tranformation(translation, rotation)} & X2l generator network2| 47}X|
operations(convolution, upsampling, downsampling, nonlinearity)di| oA equivariant ot X| =tQ15H3=0{0} &f

» LBt aliasing0| §1921H nyquist samplingE = I 0l&f8t high frequency?t 61010 &. % low-path filteringO|
output7X| Q|| UYEXIS SQIsHFOF &,
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2.1 Equivariant network layers

Convolution

Convolution Consider a standard convolution with a discrete kernel /v. We can interpret /' as
living in the same grid as the input feature map, with sampling rate s. The discrete-domain operation
is simply Feon (7)) = I+ 7, and we obtain the corresponding continuous operation from Eq.[B

feonv(2) = s * (K * (I & “.)) = K % (g)_, x (s & )) =%z (2)

due to commutativity of convolution and the fact that discretization followed by convolution with

ideal low-pass filter, both with same sampling rate s, is an identity operation, i.e., o¢ * (11l © 2) = z.

In other words, the convolution operates by continuously sliding the discretized kernel over the
continuous representation of the feature map. This convolution introduces no new frequencies, so the
bandlimit requirements for both translation and rotation equivariance are trivially fulfilled.

Convolution also commutes with translation in the continuous domain, and thus the operation is
equivariant to translation. For rotation equivariance, the discrete kernel A needs to be radially
symmetric. We later show in Section[3.2]that trivially symmetric 1x I convolution kernels are, despite
their simplicity, a viable choice for rotation equivariant generative networks.

20
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2.1 Equivariant network layers

Upsampling and downsampling Ideal upsampling does not modify the continuous representation.
[ts only purpose is to increase the output sampling rate (s > s) to add headroom in the spectrum where
subsequent layers may introduce additional content. Translation and rotation equivariance follow
directly from upsampling being an identity operation in the continuous domain. With (=) = =, the
discrete operation according to Eq. is Fuyp(Z) = 1y ® (¢s * Z). If we choose s' = ns with integer
n, this operation can be implemented by first interleaving / with zeros to increase its sampling rate
and then convolving it with a discretized filter [y © .

In downsampling, we must low-pass filter 2 to remove frequencies above the output bandlimit,
so that the signal can be represented faithfully in the coarser discretization. The operation in
continuous domain is o, (=) = "o * =, where an ideal low-pass filter . := 57 - ¢, is simply the
corresponding interpolation filter normalized to unit mass. The discrete counterpart is Fyoun (/) =
My © (Ve *(9s*Z)) = 1/8* Uy @ (g xhsx Z) = (s /5)? - Uls @ (¢s x Z). The latter equality
follows from ¢'. * 1o = tyin(s,0)- Similar to upsampling, downsampling by an integer fraction
can be implemented with a discrete convolution followed by dropping sample points. Translation
equivariance follows automatically from the commutativity of fgown(z) with translation, but for
rotation equivariance we must replace ¢ with a radially symmetric filter with disc-shaped frequency
response. The ideal such filter [9] is given by ¢2(x) = jinc(s||z||) = 2J1(7s||x||)/(7s]||z||), where
J1 1s the first order Bessel function of the first kind.
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2.1 Equivariant network layers

Nonlinearity Applying a pointwise nonlinearity o in the discrete domain does not commute
with fractional translation or rotation. However, in the continuous domain, any pointwise function
commutes trivially with geometric transformations and is thus equivariant to translation and rotation.
Fulfilling the bandlimit constraint is another question —applying, e.g., ReLU in the continuous
domain may introduce arbitrarily high frequencies that cannot be represented in the output.

A natural solution is to eliminate the offending high-frequency content by convolving the continuous
result with the ideal low-pass filter v>.. Then, the continuous representation of the nonlinearity
becomes f,(z) = ¢, x 0(2) = 52 - ¢, * o(2) and the discrete counterpart is F,(Z) = s? - 1II, ©
(0s x 0(0s *x £)) (see Figure right). This discrete operation cannot be realized without temporarily
entering the continuous representation. We approximate this by upsampling the signal, applying the
nonlinearity in the higher resolution, and downsampling it afterwards. Even though the nonlinearity is
still performed in the discrete domain, we have found that only a 2 x temporary resolution increase is
sufficient for high-quality equivariance. For rotation equivariance, we must use the radially symmetric

interpolation filter ¢ in the downsampling step, as discussed above.

Note that nonlinearity is the only operation capable of generating novel frequencies in our formulation,
and that we can limit the range of these novel frequencies by applying a reconstruction filter with a
lower cutoff than s/2 before the final discretization operation. This gives us precise control over how
much new information is introduced by each layer of a generator network (Section[3.2).
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3. Practical application to generator network

Discriminator Generator
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3. Practical application to generator network

Generator

The StyleGAN2 generator consists of two parts. First, a mapping network transforms an initial,
normally distributed latent to an intermediate latent code w ~ W. Then, a synthesis network
G starts from a learned 4 x4 x512 constant Zp and applies a sequence of N layers — consisting
of convolutions, nonlinearities, upsampling, and per-pixel noise — to produce an output image
Zn = G(Zp; w). The intermediate latent code w controls the modulation of the convolution kernels
in G. The layers follow a rigid 2x upsampling schedule, where two layers are executed at each
resolution and the number of feature maps is halved after each upsampling. Additionally, StyleGAN2
employs skip connections, mixing regularization [33]. and path length regularization.

Mapping Network: initial, normally distributed latent code z £ intermediate latent code w ~ W & transform ot= 7|2 Al
Synthesis network G: learned constant input 4x4x412 Z_0 0| Al N7H2| layerE 7{X{ output image Z_n = G(Z_0;w) E MHgt

N7H2]| layer: consisting of convolutions, nonlinearities, upsampling, and per-pixel noise

skip connection, mixing regularization, path length regularization 7|H=x =gt

Generator?| operationS2 equivariance oA 2tE= 740| 0] =29| aHAlQ!
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3. Practical application to generator network

Generator

» Zt operation0| &0}Lt equivariance StX| ™7t 4~ Q= GItH - SHA| report&t
« EQ-T/EQ-R: 0] score?t 52 45 translation / rotation0i| L3l equivariance &t= A

For translation equivariance. we report the peak signal-to-noise ratio (PSNR)
in decibels (dB) between two sets of images, obtained by translating the input and output of the

synthesis network by a random amount, resembling the definition by Zhang [69]:

EQ-T = 10+ 10810 (1200 /Ewew mit? prv enc | (talz0)i W)e(p) — tal8(20:W)le(p)*] ) 3)

Each pair of images, corresponding to a different random choice of w, is sampled at integer pixel
locations p within their mutually valid region V. Color channels ¢ are processed independently, and
the intended dynamic range of generated images —1...+1 gives [, = 2. Operator t, implements
spatial translation with 2D offset x, here drawn from distribution X2 of integer offsets. We define an
analogous metric EQ-R for rotations, with the rotation angles drawn from ¢ (0°, 360°). Appendix
gives implementation details and our accompanying videos highlight the practical relevance of
different dB values.
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3. Practical application to generator network

Generator

Configuration FID| EQ-TT EQ-RT Parameter FID| EQ-TT EQ-RT | Time Mem.
A StyleGAN2 514 - - Filter size n = 4 472 5749 3970 | 0.84x 0.99x
B+ Fourier features 479 1623 1081 * Filter size n = 6 450 66.65 4048 | 1.00x 1.00x
C + No noise inputs 454 1581 10.84 Filter size n = 8 466 6557 4209 | 1.18x 1.01x
D + Simplified generator 521 1947 1041 Upsampling m = 1 438 3996 3642 | 0.65x 0.87x
E + Boundaries & upsampling 6.02 2462 10.97 * Upsamplingmn =2 | 450 66.65 4048 | 1.00x 1.00x
F o+ I‘:]i“efe(? !‘Ol;li“eal‘ilﬁies 2-;; ig-gg :g-gi Upsamplingm =4 | 4.57 7421 4097 | 231x 1.62x
G + Non-critical sam mg i 2 i =i
H + Transformed Fouprier features 464 45.20 10.61 Stopband f0 = 21 462 5110 29.14 0.86x  0.90x
T + Flexible layers (StyleGAN3-T) | 4.62 63.01 13.12 * Stopband fro = 2! | 450 66.65 4048 | 1.00x 1.00x
R + Rotation equiv. (StyleGAN3-R) | 4.50 66.65 40.48 Stopband fro = 2! | 4.68 7313 41.63 | 136x 1.25x

Figure 3: Results for FFHQ-U (unaligned FFHQ) at 256°. Left: Training configurations. FID is
computed between 50k generated images and all training images [26.32]; lower is better. EQ-T and
EQ-R are our equivariance metrics in decibels (dB); higher is better. Right: Parameter ablations
using our final configuration (R) for the filter’s support, magnification around nonlinearities, and the
minimum stopband frequency at the first layer. * indicates our default choices.
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(b) Our alias-free StyleGAN3 generator architecture
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Figure 4: (a) 1D example of a 2x upsampling filter with n = 6, s = 2, f. = 1, and f, = 04
(blue). Setting f;, = 0.6 makes the transition band wider (green), which reduces the unwanted
stopband ripple and thus leads to stronger attenuation. (b) Our alias-free generator, corresponding
to configs T and R in Figure |3} The main datapath consists of Fourier features and normalization

(Section[3.1), modulated convolutions [34

], and filtered nonlinearities (Section|3.2). (c) Flexible layer

specifications (config T) with N = 14 and s = 1024. Cutoff f. (blue) and minimum acceptable
stopband frequency f; (orange) obey geometric progression over the layers; sampling rate s (red) and
actual stopband f. + f;, (green) are computed according to our design constraints.
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StyleGAN3 : Alias-Free Generative Adversarial Networks

3.1 Fourier features and baseline simplifications (configs B-D)

To facilitate exact continuous translation and rotation of the input zq. we replace the learned input ol i e L
constant in StyleGAN2 with Fourier features [56. 66]. which also has the advantage of naturally A SWIEG_AN? >.14 — —
defining a spatially infinite map. We sample the frequencies uniformly within the circular frequency o it Foune_r featies 4'-'_'9 16.23  10.81
band f. = 2. matching the original 4x4 input resolution, and keep them fixed over the course of it sl
training. This change (configs A and B in Figure 3] left) slightly improves FID and, crucially, allows D + Slmpllﬁe_d generator 521 1947 1041
us to compute the equivariance metrics without having to approximate the operator t. This baseline R e e GRE ShOR Ty
architecture is far from being equivariant; our accompanying videos show that the output images ok F‘lterec! UeMlEARIiieS 943 306k 105
deteriorate drastically when the input features are translated or rotated from their original position. B i iom: il amnling L S [Ikes
H + Transformed Fourier features 464 4520 1061
- - - i ayers 3- 4.62 3. 3.12
» O|O|X|Z continuous oA transformation 57| ¢/al| learned constant ; :gf;l:(])enlezs: fgg::gﬁggg; 120 26_(6); 4110.:[18

inputE Fourier fearture2 H A

« 7|&9| learned const input2 positional encoding HHE F7|= SHX|EL,
ZtEA 7 X 2201 0ot EHOE transformationO| HSE=X| 27| 02 5 Fouyrier features= stylegan32] ZEMAM Syntehsisinputt] 23|02
Hen 0[0|X| 7= explicitobA] ESAMCIL 570 2=t FHO| HUS

» StyleGAN2W|M&= signal2| 2 7|2t encoding3iCHH, StyleGAN3Y|A= » SyntehsisInput block

M=Z2Z coordinate system (SPE)S = 2i5t0] signal 22t OtL|2t phase®| . intermediate latent code w 2 input22 Hto} affine HEHS 5t 5,
CHet ME &= & encodingdtil At gt - _ _ o
» 0| Zf2 learned transformation: (1) HA| imageZ rotationgt = (2)

» StyleGAN3<= Fourier Feature (in continous®t frequency domain)2 2 translation (3) OIX|2Q 2= user-specified transform
inputE HZASHY infinit domain2 = &5, SA[0f| Postional _ = e _ -
Encoding HHE X explicitotA| & 4= UA & » sampling gridE BF=MA{ fourier featureZ Het

28



StyleGAN3 : Alias-Free Generative Adversarial Networks

3.1 Fourier features and baseline simplifications (configs B-D)

» Baseline Simplification Configuration FID] EQTT EQRT
A StyleGAN2 5.14 - —
Next, we remove the per-pixel noise jnputs because they are strongly at odds with our goal of a natural B+ Fourier features 479 1623 1081
transformation hierarchy. i.e.. that the exact sub-pixel position of each feature is exclusively inherited C + No noise inputs 454 1581 10.84
from the underlying coarse features. While this change (config ) is approximately FID-neutral. it D + Simplified generator 521 1947 1041
fails to improve the equivariance metrics when considered in isolation. E + Boundaries & upsampling 6.02 2462 10.97
; . ; F + Filtered li ities 6.35  30.60 10.81
To further simplify the setup, we decrease the mapping network depth as recommended by Kar- = ere.. e 1‘:’1ean-1es
P . ik R = - G+ Non-critical sampling 478 4390 10.84
ras et al. [32] and disable mixing regularization and path length regularization [34]. Finally, we also sl o o e
ik : sl ! B o : : H + Transformed Fourier features 4.64 4520 10.61
eliminate the output skip connections. We hypothesize that their benefit is mostly related to gradient Floxible lavers (SWEGANAT) | 167 6301 1312
magnitude dynamics during training and address the underlying issue more directly using a simple ek el = el I = i
= ) = = = e St R + Rotation equiv. (StyleGAN3-R) | 4.50 66.65  40.48

normalization before each convolution. We track the exponential moving average 02 = E[z?] over all

pixels and feature maps during training, and divide the feature maps by v/o2. In practice, we bake the
division into the convolution weights to improve efficiency. These changes (config D) bring FID back
to the level of original StyleGAN2, while leading to a slight improvement in translation equivariance.

(1) per-pixel noise inputs |4 (2) StyleGAN2-ADAO||A X& the mapping network depthE &
» StyleGAN20]| & El= per-pixel noise= 0|0|X|2] MIEHQI QASS
SHHO|A °**0fE% 2t=7| WZ0i, O|0|X|7} hierarchicaldtH| &5

x| 2&t (4) output skip connections |7

(3) disable mixing regularization and path length regularization

* noiseE M|7{5tH, figures (=F2| figure3)E EH FID7t WM EX|= ¢ - FID scoreS =017| /3 2,3,45 #AXIT, RS Hastol?| 2sh FID
X|2t &M equivariance & 4= U = om7t T8t 2,3 42 M AHGHHCT Bt
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3.2 Step-by-step redesign motivated by continuous interpretation

» Boundaries and upsampling (config E) Configuration FID| EQ-Tt EQ-R?
A StyleGAN2 504 - -
 Boundaries : &£ bI_:_E_O-"A-IE feature map% _'?_@-@- _g_?_l-gi f_zll-g'?ﬂf_l-ﬂ B + Fourie_r fe.atures 4.79 16.23 10.81
JbEgt. MatM target canvali| 0{= MEQ| margig & &, high-layer2 Z € &Hongisips 404 1Al 108
A2 0| BHEEl canvaZ cropat D + Simplified generator 5.21 19.47 1041 |
Tl Tes = Cfop= E_+ Boundaries & upsampling 6.02  24.62  10.97
v border paddingO| L& 0|0|X|2| coordinate at= (™ 211 Q7| [ F + Filtered nonlinearities 6.35  30.60 1081
=0 borderZ explicitstA| extensiondt= 1PH0| Qo G+ Non-critical sampling 478 4390 10.84
_ - - H + Transformed Fourier features 464 4520 1061
AlS] 747 _Di in x4 =H5 2 AIRSEHC 5
v &% 21}, 10-pixel margin I=H 2510 0|5 AR ST, T + Flexible layers (StyleGAN3-T) | 4.62  63.01 13.12
R + Rotation equiv. (StyleGAN3-R) | 4.50 66.65  40.48
» Upsampling: 7|Z9] bilinear 2X upsampling filterE Motivated by our theoretical model. we replace the bilinear 2x upsampling filter with a better
windowed sinc filter2 CHX|5t0{ low-pass filtering= approximation of the ideal low-pass filter. We use a windowed sinc filter with a relatively large Kaiser
SHH| SHE2 &t window [41] of size n = 6, meaning that each output pixel is affected by 6 input pixels in upsampling

and each input pixel affects 6 output pixels in downsampling. Kaiser window is a particularly good
choice for our purposes, because it offers explicit control over the transition band and attenuation
(Figure[4h). In the remainder of this section, we specify the transition band explicitly and compute the
remaining parameters using Kaiser’s original formulas (Appendix [C). For now, we choose to employ
critical sampling and set the filter cutoff f. = s/2, i.e., exactly at the bandlimit, and transition band
half-width fr, = (v/2 — 1)(s/2). Recall that sampling rate s equals the width of the canvas in pixels,
given our definitions in Section|2]

The improved handling of boundaries and upsampling (config E) leads to better translation equiv-
ariance. However, FID is compromised by 16%, probably because we started to constrain what the
feature maps can contain. In a further ablation (Figure 3| right), smaller resampling filters (n = 4)
hurt translation equivariance, while larger filters (n = 8) mainly increase training time.
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3.2 Step-by-step redesign motivated by continuous interpretation

> Filtered nonlinearities (config F) Configuration FID| EQ-TT EQRT
A StyleGAN2 504 - -

+ RelLU7} FH9| equivariance= .__.orX| , bandlimitE X|7|X| o™ B+ Fourier features 479 1623  108]
aliasing0| MZ 4= QI H s Mt non- linearity function2 X|< € &omeieinpus 4o oAl dhs
Il low-path filteringS 2 {0t °|'|:|' D + Simpllﬁe.d generator . 521 1947 1041

E + Boundaries & upsampling 6.02 2462 1097

» upsample-leaky ReLU-downsample2| sequence’} CUDA kernelO{|A | F + Filtered nonlinearities 6.35  30.60 1081

SIXOZ HAE|E 2 x| X515 (1OI:I|-| wHraExl + memory saving) G + Non-critical sampling 478 43.90 10.84
e - H + Transformed Fourier features 4.64 4520 1061

* upsampling + downsampling= 2224t m = 2 H SZo[LL 2 T + Flexible layers (StyleGAN3-T) | 4.62  63.01 13.12
R + Rotation equiv. (StyleGAN3-R) | 4.50 66.65  40.48

Parameter FID| EQ-Tt EQ-R% Time Mem.
Filter size n = 4 472 5749 3970 0.84x 0.99x
* Filter size n = 6 450  66.65 4048 1.00x 1.00x
Filter size n = 8 4.66 65.57 42.09 1.18x 1.01x

Upsampling m = 1 438 3996 36.42 0.65x 0.87x
* Upsampling m = 2 450 66.65 4048 1.00x  1.00x
Upsampling m = 4 457 7421 4097 231x 1.62x

3

Stopband fio =2'% | 462 51.10 29.14 | 0.86x 0.90x
* Stopband fi o = 2% | 450 66.65 4048 | 1.00x 1.00x
Stopband f; 0 = 2! | 468 7313 41.63 | 1.36x 1.25x
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3.2 Step-by-step redesign motivated by continuous interpretation

» Non-critical sampling (config G)

—

+ aliasing2 generator?| equivarianceE UYX|= &Q10|7| = StCt. [M2fA] ZF
Zt9| layerE X|< [ aliasingO| A4 7|X| LY E=2 sHOf &fL|C}.

+ config GO|IA = Kol & =2 layert M aliasing0| CHM7| =& cutoff
frequency=S f c=s/2 -f_h 2 ¥F0 FUSLICL

Non-critical sampling (config G) The critical sampling scheme — where filter cutoff is set exactly

at the bandlimit— is ideal for many image processing applications as it strikes a good balance

Configuration FID| EQ-TT EQ-R?T
A StyleGAN2 5.14 - -
B + Fourier features 479 1623 10.81
C + No noise inputs 4.54 15.81 10.84
D + Simplified generator 521 1947 1041
E + Boundaries & upsampling 6.02 24.62 1097
F + Filtered nonlinearities 6.35  30.60 10.81
| G + Non-critical sampling 478 4390 10.84
H + Transformed Fourier features 4.64 4520 1061
T + Flexible layers (StyleGAN3-T) | 4.62 63.01 13.12
R + Rotation equiv. (StyleGAN3-R) | 4.50 66.65  40.48

between antialiasing and the retention of high-frequency detail [58]. However, our goals are markedly
different because aliasing is highly detrimental for the equivariance of the generator. While high-
frequency detail is important in the output image and thus in the highest-resolution layers, it is less
important in the earlier ones given that their exact resolutions are somewhat arbitrary to begin with.

To suppress aliasing, we can simply lower the cutoff frequency to f. = s/2 — f3, which ensures that
all alias frequencies (above s/2) are in the stopband For example, lowering the cutoff of the blue
filter in Figure [4h would move its frequency response left so that the the worst-case attenuation of alias
frequencies improves from 6 dB to 40 dB. This eversampling can be seen as a computational cost of
better antialiasing, as we now use the same number of samples to express a slower-varying signal than
before. In practice, we choose to lower f,. on all layers except the highest-resolution ones, because
in the end the generator must be able to produce crisp images to match the training data. As the
signals now contain less spatial information, we modify the heuristic used for determining the number
of feature maps to be inversely proportional to f. instead of the sampling rate s. These changes
(config G) further improve translation equivariance and push FID below the original StyleGAN2.
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3.2 Step-by-step redesign motivated by continuous interpretation

» Transformed Fourier Features(config H) Configuration FID] EQTT EQRT
A StyleGAN2 5.14 - -
» StyleGAN3 Generator?| layerE2 equivariant 5t7| 20 unaligned B+ Fourier features 479 1623 10381
datasetO|L} Q|2 HEA|ZI datasetOf] CHEHA T EH50| ZHEl. (DtQF g Igo “?.‘;e('i"p“[s t i"?: igi; :8‘2?
= = AHA implified generator 5.2 : j
T}t)ermedlate feature z_iS HBAI7|H final image z_N &= H=0} &d E + Boundaries & upsampling 6.02 24.62 1097
F + Filtered nonlinearities 6.35  30.60 10.81
« 2L} layer X}™|O|M global 14| transformation 6t7|0f|= layerQ| G+ Non-critical sampling 478 4390 10.84
capabilityZ} ZtCt. [2tA Input Fourier Features XtH|E HEA|7 = HiAl | H + Transformed Fourier features 4.64 4520 10.61
OZ MME|= 0|0|X|E transformation E|E2 &t. T + Flexible layers (StyleGAN3-T) | 4.62 63.01 13.12
R + Rotation equiv. (StyleGAN3-R) | 4.50 66.65  40.48

* learned affine layerE Sl input Fourier Features 7} global translation
or rotation £|£2 IS0 E,
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3.2 Step-by-step redesign motivated by continuous interpretation

» Flexible layer (config T) Configuration FID| EQ-TT EQ-R?T
A StyleGAN2 5.14 - -

+ aliasingE Q0= HE =Q5LLt O|0|X|I2 St&E M A2 layerE Z42E detail@ 8t&55H= B+ Fourier features 479 1623 108l
AE =Q3 C + No noise inputs 454 15.81 10.84
D + Simplified generator 521 1947 1041
+ &, high-frequenc MH3| ot53 oflOf 5t=H0|, low-path f||ter|ne H5 ZotA doF=Lt E + Boundaries & upsampling 6.02 2462 1097
HM™ aliasing2 ot 27| ZIX|2t high-frequency (detail)7} et&E|X| gt F + Filtered nonlinearities 6.35 30.60 10.81
G+ Non-critical sampling 478 4390 10.84
] L L _ H + Transformed Fourier features 464 4520 10.61
* config TOM= layerS flexibleotH| &3¢ [T+ Flexible layers (StyleGAN3-T) | 4.62__ 63.01 __13.12
R + Rotation equiv. (StyleGAN3-R) | 450 66.65 40.48

« XNalAE layerO| A= aliasingO| Qt M7|=2 lower cutoff
frequencyZ S5ff low-path filteringS Z5IAH Z0{F

_ _ Parameter FID| EQ-Tt1 EQ-R? Time Mem.

« 1o layerOfl M= 0|0]X|2| detailE &t&6l= H S0 Filter size n — 4 372 5749 3970 | 0.84x 0.9x
Z flexible oA &350 high-frequencyE st&56tES & * Filter size n = 6 450 66.65 4048 | 1.00x 1.00x
Filter size n = 8 466 65.57 42.09 1.18x 1.01x

Upsampling m = 1 438 3996 36.42 0.65x  0.87x

* Upsampling m = 2 450 66.65 4048 1.00x  1.00x

The new layer spemflc_atlons_]?galn m;prove trans!auon equivariance (config T), Upsampling m = 4 457 7421 4097 | 231x 162
ellml.natlng the rerpalnlng artifacts. A .u.rther ablation (Flg.ure.3, right) shows that f; o Stopband foo — 2% | 462 SL10 20.14 | 0.86x 0.90x
provides an effective way to trade training speed for equivariance quality. Note that * Stopband foo = 221 | 450 6665 4048 | 1.00x 1.00x
the number of layers is now a free parameter that does not directly depend on the Stopband foo = 21 | 468 7313 4163 | 136x 125x

output resolution. In fact, we have found that a fixed choice of N works consistently
across multiple output resolutions and makes other hyperparameters such as learning
rate behave more predictably. We use N = 14 in the remainder of this paper 34
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3.2 Step-by-step redesign motivated by continuous interpretation

> Flexible layer (config T)

Latent | Log, frequency Figure 4c illustrates an example progression of filter parameters in
Ma:pi.ug o] | W q Lf—~——————————5 a 14-layer generator with two critically sampled full-resolution
network D# 4 © L\ J layers at the end.

@(m COHI L [ Demod P Conv 33 or 1-1 | L \“»\ + The cutoff frequency grows georp'etrically from f. = 2 in the first
e : iﬁ / - 7 L \ layer to f, = sy = 2 in the first critically sampled layer. We choose
-\ . L; / - T La \!‘ the minimum acceptable stopband frequency to start at f, , = 221,
> Ls \ [N s [ . \ and it grows geometrically but slower than the cutoff frequency. In
—> Ls | cupa |[LeakyRelU | ’ our tests, the stopband target at the last layer is f, = f. - 293, but
: II:Z |[SE=Et oSl | o N the progression is halted at the first critically sampled layer. Next,
NS [ Crop | L7 "-\ we set the sampling rate s for each layer so that it accommodates
> Iz 1 Ls \\ - frequencies up tof;, rounding up to the next power of two without
Colors : Iigo _ Is \ exceeding the output resolution. Finally, to maximize the
OFixed | > 1y R 3 \ attenuation of aliasing frequencies, we set the transition band half-
W Lesined| [ Es e S gy SRS g];-bmd " \\ width to f;, = max (% ft) — f., i.e., making it as wide as possible
AT “[abModb{ Cowixt | | | | — Suplingrates |\ within the limits of the sampling rate, but at least wide enough to
hs bu;ﬁa i | e PR ] reach f;. The resulting improvement depends on how much slack

is left between f; and s = 2; as an extreme example, the first layer
stopband attenuation improves from 42 dB to 480 dB using this
scheme.
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3.2 Step-by-step redesign motivated by continuous interpretation

» Rotation equivariance (config R) Permalink Configuration FID| EQ-Tt EQ-R?
A StyleGAN? 514 - -
. network% rotation equivariant 6'-7-” E@sl'j—xl' Q [[H()-"E 27|-X|% E%;!%:II' B + Fourier features 4.79 16.23 10.81
- = ~ C + No noise inputs 454 15.81 10.84
v 3x3 convs 1x1 conv 2 HZ. T4l feature map2| 5 24 S7t D + Simplified generator 521 1947 1041
v sinc-based downsampling filterZ radially symmetric jinc-based E + Boundaries & upsampling 6.02 2462 1097
filter2 24 F + Filtered nonlinearities 6.35  30.60 1081
_ =< ' _ G+ Non-critical sampling 478 4390 10.84
« SIEEIPHO|M trainable parameter’t 56% =HE= &1t H + Transformed Fourier features 4.64 4520 1061
* FID= H|23H EQ-R QF7t SHALE T + Flexible layers (StyleGAN3-T) | 4.62 63.01 13.12
il e ees I 'R+ Rotation equiv. (StyleGAN3-R) | 4.50 66.65  40.48

» An additional stabilization trick in this configuration.

* Early on in the training, we blur all images the discriminator sees using a Gaussian filter.
We start with 6=10 pixels, which we ramp to zero over the first 200k images. This prevents
the discriminator from focusing too heavily on high frequencies early on. Without this trick,
config R is prone to early collapses because the generator sometimes learns to produce
high frequencies with a small delay, trivializing the discriminator’s task.
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4. Results
Dataset Config FID| EQ-TT EQ-R7T Ablation Translation eq. + Rotation eq.
FFHQ-U StyleGAN2 379 1589  10.79 FID| EQ-Tt | FID| EQ-Tt EQ-R%
70000 img, 10242 | StyleGAN3-T (ours) | 3.67 61.69 1395 # Main configuration 462  63.01 450 6665 40.48
Train from seratch | StyleGAN3-R (ours) | 3.66 64.78  47.64 With mixing reg. 4.60 6348 | 467 6359  40.90
FFHQ StyleGAN2 270 1358 10.22 With noise inputs 496  24.46 579 2671 26.80
70000 img, 1024* | StyleGAN3-T (ours) | 2.79 61.21  13.82 Without flexible layers | 4.64  45.20 465 4474 2252
Train from scratch | StyleGAN3-R (ours) | 3.07 64.76  46.62 Fixed Fourier features 593 64.57 6.48 6620 41.77
METFACES-U | StyleGAN2 18.98 18.77 13.19 With path length reg. 500 68.36 598  71.64 42.18
1336 img, 1024° StyleGAN3-T (ours) | 18.75 64.11 16.63 0.5% capacity 743 63.14 6.52 63.03 3989
ADA. from FFHQ-U | StyleGAN3-R (ours) | 18.75 66.34  48.57 * 1.0 capacity 462 6301 | 450 6665 40.48
METFACES StyleGAN2 15221639 1289 2.0 capacity 3.80 66.61 | 4.18 70.06 42.51
1336 img, 10242 SIYICGAN3-T (_OurS) 15.11 65.23 16.82 * Kaiser filter. n. = 6 4.62 63.01 4.50 66.65 40.48
ADA, fom FFFQ | StyleGAN3-R (ours) | 15.33 64.86 46.81 Lanczos filler,.a =2 | 4.69 5193 | 444 5770 2525
AFHQV2 StyleGAN2 4.62 1383 11.50 Gaussian filter, 0 = 0.4 | 591 56.89 | 573 59.53  39.43
15803 img, 512° StyleGAN3-T (ours) 4.04 60.15 13.51
ADA, from seratch | StyleGAN3-R (ours) 4.40 64.89 40.34 G-CNN comparison FID| EQ-TT EQ-RT | Params Time
BEACHES StyleGAN2 503 1573 12.69 * StyleGAN3-T (ours) 462 6301 1312 | 233M 1.00x
20155 img, 5122 StyleGAN3-T (ours) | 4.32 59.33 15.88 + pd symmetry 469 6190 17.07 | 21.8M 2.48x
ADA, fromscratch | Siy]eGAN3-R (ours) 457 63.66 37.42 * StyleGAN3-R (ours) 4.50 66.65 40.48 15.8M 1.37x

Figure 5: Left: Results for six datasets. We use adaptive discriminator augmentation (ADA) [32] for
the smaller datasets. “StyleGAN2" corresponds to our baseline config B with Fourier features. Right:
Ablations and comparisons for FFHQ-U (unaligned FFHQ) at 2562. * indicates our default choices.
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4. Results

* While in StyleGAN2 all feature
maps seem to encode signal

. . . _ magnitudes, in our networks
Generated image Input 2z Internal representations ——— Latent interpolation ——— some of the maps take a

» Internal Representations

different role and encode phase
information instead. Clearly this
is something that is needed
when the network synthesizes
detail on the surfaces; it needs
to invent a coordinate system.

In StyleGAN3-R, the emergent
positional encoding patterns
appear to be somewhat more
well-defined.

StyleGAN2

We believe that the existence of
a coordinate system that allows
precise localization on the
surfaces of objects will prove
useful in various applications,
including advanced image and
video editing.

'
fe

Figure 6: Example internal representations (3 feature maps as RGB) in StyleGAN2 and our generators.

StyleGAN3-R  StyleGAN3-T
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