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Diffusion and Score-Based Generative Models

[Model Distribution]

Estimating the probability distribution of data

000

Data samples
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Almost generative models follow the same
pipeline.

The basic idea is to estimate the probability
distribution of data.

In order to build a deep generative model, the
first thing we need to do is to collect a large
data set.

And as a running example, let's suppose the
data set contains many images of dogs.
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[Model Distribution]
Estimating the probability distribution of data

Data distribution °oo [FRA

(unknown)

Model distribution
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A typical assumption in statistics and
machine learning is that all those data
points in our training data set come from
some underlying data distribution.

In other words, those data points are
basically ID samples from this data
distribution, but we don't have the
analytical form of the data distribution,
and we have to estimate it.

And to estimate this data distribution, we
have to create a model. This model
represents parameterized probability
distribution, which we call the model
distribution.

And we hope to tune this model
parameter to make sure this model
distribution is close to the data distribution
in a certain sense.

So if this model distribution is very close
to the data distribution, then we can use
the model for many important applications.
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[Sampling]
[Model Distribution]

* And one example is, of course, we
can generate an unlimited number of

Estimating the probability distribution of data novel data points just by sampling

" from this model distribution.
Data distribution >oo iR

(unknown) a ” High Low‘ .
A : probability ~Probability

[Probability Evaluation]

» Another application is we can use
this model distribution to compute
the probability value for any potential
data point.

&

» So as an example for a data point,
like a picture of a chihuahua,
because it is a picture of a dog, it is
actually within our data distribution.
And therefore, this model distribution
usually assigns high probability
values for such data points. For
some irrelevant data point, like a
picture of a muffin, because it is not
a picture of a dog, a good model
distribution will add lower probability
values to such images.

v

Model distribution

[Generative Model]

* So because this model distribution
provides a way to generate novel
data points, we also referto it as a
generative model.
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[Sampling]
[Model Distribution]

* And one example is, of course, we
can generate an unlimited number of

Estimating the probability distribution of data novel data points just by sampling
o . ’ from this model distribution.
Data distribution ©0o nl; High Low [Probability Evaluation]
(unknown) -. 'g i babili « Another application is we can use
A probablllty probability this model distribution to compute

the probability value for any potential
data point.

* So as an example for a data point,
like a picture of a chihuahua,
because it is a picture of a dog, it is
actually within our data distribution.
And therefore, this model distribution
usually assigns high probability
values for such data points. For
some irrelevant data point, like a
picture of a muffin, because it is not
a picture of a dog, a good model
distribution will add lower probability
values to such images.

[Generative Model]

» So because this model distribution
provides a way to generate novel
data points, we also refer to it as a
generative model.
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[Model Distribution]

Training generative models

Xi ~ Pdata

i=1,2,---,N

How can we train those generative
models?

As we know, when we have a large
data set, we may formalize the
problem a little bit further.

We can use a simple x_i to
represent each data point in the data
set and we have a total of N data
points. And our model provides a
family of probability distributions.

We hope to find a single probability
distribution inside this huge family by
minimizing the distance from P_theta
to P_data.

And afterwards, we can just
generate samples from P_data.



CVPR2022 Tutorial — Yang Song

Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmaCMwuM2Q

[Data Distribution]

* However, there is one key challenge

The key challenge for building complex generative models associated with this framework.
» That s, our data distribution can be
Data distribution coo n; extremely complicated, especially for

(unknown) data is high dimensions.

e N ' » So consider how complicated it
Data distribution is might be for distributions of images,

extremew complex for video, audio. It might have millions of
high dimensional data.

dimensions.

* And as a result, we have to build a
very powerful model distribution in
order to estimate our data
distribution.

Model distribution

» So how can we build a powerful
How to build a complex model distribution?

model to fit the data
distribution?
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The key challenge for building complex generative models

Data distribution
(unknown)

Model distribution

-

Let's recall that in statistics we often
work with simple distributions, such as
Gaussian distribution.

Of course, a Gaussian distribution is
too simple. It won't be able to
approximate our complicated data
distribution. But it serves as a good
starting point.

A Gaussian distribution is basically a
computational graph that has two
layers. The first layer corresponds to
the input data point. The second layer
is a single unit that basically gives you
the probability density function of this
Gaussian distribution.

This computation is very simple, and
the middle in this slide denotes the
mean parameter of discussing
distribution. By changing the
parameter to middle, you are basically
changing the mean of this Gaussian.

But as we said, Gaussian models are
too simple. How can we make a more
complicated model?

Well, a very natural idea is to
leverage a bigger and deeper
computational graph.
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[Data Distribution]

* And we also call it a deep neural

The key challenge for building complex generative models network. So we hope to use that deep
neural network to represent a

ictri : N .. complicated probability distribution Pg,

Dati:}:itggﬂt;on - na where theta denotes the weights in ’

this deep neural network.

* And when we use deep neural
networks to build those powerful
generative models, we obtain deep

generative models.
-~ Po(x)
X

Deep Neural Network

J

Deep Generative Models

Model distribution

)/ @O

10
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[Data Distribution]

The key challenge for building complex generative models

X
fo(x) Bfa( ) ofo(x)
- v
Normalizing constant

Zg = | /o™ dx

‘

» By definition, this normalizing constants should be computed
by evaluating the high dimension integral of the exponential
function of our theta over all possible values of x in the space.

https://www.youtube.com/watch?v=wMmqCMwuM2Q

But it is actually nontrivial to use a
deep neural network to directly
represent a probability distribution
because we typically view a deep
neural network as a black box that
converts a high dimension input x to a
typically one-dimensional output

f theta.

So this output value f_theta does not
directly model distribution because it
may not be positive everywhere.

Our first step to convert this into our
probability density is to take the
exponential of the output. So then the
output becomes positive.

And then we can normalize the output
by dividing by a constant Z_theta in
order to construct a probability
distribution which has positive values
everywhere and is also properly
normalized.

So the denominator here is called the
normalizing constant.
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[Data Distribution]

e ) * In the special case of Gaussian
The key challenge for building complex generative models models, this normalizing constant is
very simple to compute because
f_theta in Gaussian models has a very
simple form.

» So we can directly compute the
ef 6 (x) : integral in closed form.

X

Normalizing constant
Normalizing constant for Gaussians

1
Zn = (27)4/2

12
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[Data Distribution]

T ; » We can directly compute the integral in
The key challenge for building complex generative models closed form.

» But when we are trying to handle more
powerful deep neural network models,

thi lizi tant b
fox) efo™) ot Dt
| ) .
-~ 0 -»
X - )

Normalizing constant

Zg = Jef"(") dx

13
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[Data Distribution]

S " » And as a quick example, even if we
The key challenge for building complex generative models consider a simplified case where x s
discrete and in which case the integral
becomes a summation, computing
this normalizing constant is still a P-
complete problem, which is at least
as hard as NP-complete.

+ And this difficulty is by no means the
unique challenge in deep generative
modeling.

a8 35

#P-complete even for

* You can find many similar challenges
in adjacent fields, such as
thermodynamics and statistical
mechanics. And people have been
studying this problem for quite a while.

Yyillard Gibbs Gustay Zeunes hpr

(1844-1906) (1839-1803) (1828-1907) (1837-1923)

Thermodynamics & Statistical Mechanics

discrete variables

14
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[Deep Genetic Models]

. . . * In the current literature of deep

Tackling the intractable normalizing constant generative models, there are mostly
three approaches to address this
intractable normalizing constant

Approximating the normalizing constant difficulty.

* Energy-based models [ackiey et al. 1985, LeCun et al. : * And as a result, we can actually
2006) 9 RS S evaluation categorize deep generative models

into three different categories of
families.

Inaccurate probability

Restricted model » The first category is based on.

] approximating this normalizing
famlly constants using approaches such as
Markov chain Monte Carlo.

* One typical example inside this family
is energy-based models trained by
. ‘ I — contrastive divergence.
viodeling the Generation rrocess Unly Cannot evaluate - The disadvantage of this direction is
Generative Adversarial Networks (GANS) probabilities then because we have to approximate
S this normalizing constant, we cannot
compute the probability value
accurately, since the probability value
requires dividing by this approximate
normalizing constant.




CVPR2022 Tutorial — Yang Song

Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmaCMwuM2Q

[Deep Genetic Models]

. . . » The second major approach is based

TaCkllng the IntraCtab|e nOrmahZIng Constant on using restricted neural network
models, such that this normalizing
constant is tractable by construction.

Inaccurate probability * There are a few examples inside this
- family, but the challenges are once we
evaluation

restrict our neural network models, we
also limit the flexibility of deep
generative models that we can
potentially build along this direction.

Using restricted neural network models

Restricted model

family

Modeling the Generation Process Only Cannot evaluate
Generative Adversarial Networks (GANS) probabilities

{soodieliow et ai. ZU

16
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[Deep Genetic Models]

* The last category is based on

Tackling the intractable normalizing constant modeling the data generating

process directly instead of modeling
the probability density function.

Inaccurate probability » The most predominant example in this
- family is generative adversarial
evaluation networks.

* However, because those approaches
to not model the underlying data
distribution, they cannot give us

) accurate probability values.
Restricted model
family

Modeling the Generation Process Only Cannot evaluate
Generative Adversarial Networks (GANS) probabilities

17
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[Deep Genetic Models]

* These are a few challenges

Desiderata of better generative modeling associated with previous generative

modeling frameworks.

« And if we want to address those
Inaccurate probability difficulties by proposing a better

evaluation

framework of generative modeling,
then we require this better framework
to satisfy certain desiderata.

Restricted model
family

Cannot evaluate

probabilities

18
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[Deep Genetic Models]

. . . » And one thing is we hope that this
Desiderata of better generative modeling better framework can allow us to use a
very flexible neural network models
to parameterize this distribution.

Inaccurate probability Take full + So this not only addresses the second
&t advantage of challenge on our side, but also allows
evaluation deep neural us to take full advantage of the deep
learning revolution to leverage very
networks powerful deep neural networks to build
our deep generative models.

Restricted model

family

Cannot evaluate
probabilities

QO © ©

19
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Desiderata of better generative modeling

Inaccurate probability

evaluation

Restricted model

family

* Take full
advantage of
deep neural
networks

* Qutlier detection, model
comparison, compression...
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* The second desideratum is we hope to

evaluate probability values
accurately using this new framework
of generative modeling.

If we can evaluate the probability
values accurately, we can address the
rest of the challenges on the left side.
And then moreover, those accurate
probability values are very important
for applications such as outlier
detection, model comparison, or
lossless compression.

20
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[Deep Genetic Models]

Desiderata of better generative modeling

Inaccurate probability * Take full
evaluation advantage of
deep neural
networks

» Better samples
« Controllable

Restricted model

family

* OQutlier detection, model
comparison, compression...

https://www.youtube.com/watch?v=wMmqCMwuM2Q

And finally, because we are aiming to
build a more powerful framework of
general models, we of course want to
generate samples with better quality.

So not only do we want to generate
samples with better quality, we also
want to control this generation
process in a principled way so that we
may use this generative model for
numerous downstream applications.

And one example is medical image
reconstruction, which | will discuss
briefly later in the tutorial.

So now, in today's talk, | will show you
one such framework that satisfies
all three desiderata listed here.

And the key of this framework is to
work with score functions to
represent our probability
distribution.

21
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[Score Functions]

« What is the score function?

Our proposal: working with score functions :

Well, suppose we have a continuous
probability distribution where we use
px to represent the probability density
function.

p(x) | |
- . ] + We define the score function as the
Probability density function gradient of log px.

» This quantity has multiple names. It
can be called a Stein score function
to differentiate from Fisher score
functions that typically appear in
statistics. It can also be called as the
score function or simply score.

» Be careful this gradient is taken with
respect to the random variable X, it

is not taken with respect to any
Vx log p(x) model parameter like theta.

(Stein) score function

» What does our score function look like?

22
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[Score Functions]

. . : » Let's consider a simple example which
Our proposal: working with score functions is a mixture of two Gaussians. This
figure shows a density function and
...... , the score function for this mixture of
St Gaussian distribution.

. ;- » The density function is a color coded,
' where darker color indicates higher
density. The score function is a vector
field that gives the direction where the
density function grows most quickly.

[ 4
»
»
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» So given the density function, we
can compute the score function very
easily because we can just text the
derivative.

nnnnnn

. »
RN
O R R Y Y N

el
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» Conversely, with the score function,
1 -l we can also recover the density
vx 0g p(x) function in principle by computing

(Stein) score function Score vs. density function integrals.

.
d 44 4 b e NN
,
L}
]
\

» So mathematically this score function
preserves all the information in the
density function. They are equivalent
to [INAUDIBLE].. But
computationally, this score function
is much easier to work with
compared to the density function.
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Score-based generative modeling: outline

+ Bypass the
normalizing constant

* Principled statistical
methods

[Song et al. UAI 2019 oral]

* Higher sample
quality than GANs

« Controllable
generation

[Song & Ermon. NeurlPS 2019 oral]
[Song & Ermon. NeurlPS 2020]
[Song et al. ICLR 2021 oral]
(Outstanding Paper Award)

[Song et al. ICLR 2022]

* Accurate probability
evaluation

» Better estimation of
data probabilities

[Song et al. ICLR 2021 oral]
[Song et al. NeurlPS 2021 spotlight]

* When we work with the score function

for representing probability
distributions, we get our score-based
generative models. And | will show you
that this score-based generative model
has multiple advantages.

[First] it allows very flexible models
because the score functions actually
do not need to be normalized at all.
Which means you can use a very
flexible neural net models to represent
this score function, and we can learn
such models or score functions
from data using principle statistical
approaches.
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Score-based generative modeling: outline

* Bypass the
normalizing constant

* Principled statistical
methods

[Song et al. UAI 2019 oral]

* Higher sample
quality than GANs

« Controllable
generation

[Song & Ermon. NeurlPS 2019 oral]
[Song & Ermon. NeurlPS 2020]
[Song et al. ICLR 2021 oral]
(Outstanding Paper Award)
[Song et al. ICLR 2022]

* Accurate probability
evaluation

+ Better estimation of
data probabilities

[Song et al. ICLR 2021 oral]
[Song et al. NeurlPS 2021 spotlight]

* [Second] We can directly generate

samples from those models of
score functions, and those samples
could have surprisingly good quality
and can be even better than
[INAUDIBLE] in many situations. And
moreover, we can control the sample
generation process in a principal way
for many important applications.

[Third], even if we only have the
model of the score function, we can
still compute the probability values
accurately. And empirically, we can
even obtain better probability
values compared to those models that
directly work with probability density
functions.

So in the rest of the tutorial, | will first
focus on how score-based generative
modeling allows very flexible models.

25
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[Flexible models]

Flexible models * Recall that one major difficulty in deep
generative modeling is due to the
i 11 intractabl lizi tant
Score functions bypass the normalizing constant oroblom whon we arg. D o o 4l

the probability density function.

X X X
p( ) p( ) p( ) Indeed, if we want to model this
- - 5 probability distribution using a
030/ . - normalized probability model, then no
Vo j ‘ , matter how we change our model
0.2} 0.25} 0.25} | . .
; ‘ ‘ parameter in some of the architectures
i 020 =L or other configurations, we always
o8} o area = 1 have to ensure that the distribution
g0 . 0.10} ' ‘ AT . represented is fully normalized.
Vi ‘ am ' e \ In other words, the area below this
o N 1 o - I T s 10 1w s o« w curvehastobe1.
z T T

- , . - . . . . . A to thi traint, wh
Probability density function Probability density function Probability density function UQS tiiedgep':ecjgls,:zaox ggd"\sto

those density functions, we always
have to deal with this intractable
normalizing constant difficulty.

fo(x)

26
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Score functions bypass the normalizing constant

p(x)
-\

025

Probability density function
p(x)

Probability density function

Vx log p(x)

st

10

T

Score function

Vx log p(x)

Score function

p(x)

Probability density function

p(x)

0.35;

0.30} [

Probability density function

Vx log p(x)

Score function

Vx log p(x)

Score function
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Flexible models
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« But in contrast, if we model the same
distribution through the score

Score functions bypass the normalizing constant functions, then, as the animation
shows, there is no such
normalization restriction.

X Vx log p(x
p( ) x = gp( ) * In fact, if we compute a score
0.35} function there is no such
- . normalization restriction.
025 l\
oéog ‘ " . .
area = 1
pol
,."‘oosé
0 5 :1(; 5 0 T

A

\
[

Score function
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Flexible models « If we compute a score function for the

neural network on the left side, we

Score functions bypass the normalizing constant notice that the score function is the

p(x)

035}

033‘5

0.25}

C?ﬂg ‘4
area/’= 1
/ oao'E"

1]
0.05}

|
-10 -5 0

difference of two terms.

intractable normalizing constant.
But the second term is always 0
because the gradient of any
constant is always 0.

Vx log p(x) - Only the second term involves the

Score function

29
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[Flexible models]

Flexible models » As aresult, the score function equals
the gradient of the deep neural

Score functions bypass the normalizing constant network.

* And as you might know, those
Vi log p(x) gradients of deep neural networks can
N be easily computed with automatic

p(x)

differentiation or with backpropagation.
So this is a very efficient operation.

And from the [INAUDIBLE], we use a
simple s_theta to denote such a deep

’ ‘“ ) neural network model for the score
f function, and we call it our score
R >l Il model.
/ bos!
0 —5 (:J 5 0 :
k, T

Probability density function

Vi logpe(x) = Vi fo(x) —'_V_:gﬁg:Z}'
fo(X)  _fox) — V. fo(x) v
> Polx) = =2 —so(x)

30
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[Flexible models]

Flexible models » Suppose we have collected a large

trained data set, and again we use x1,

Score models can be estimated from data x2, o xN to denote each point in this

data set.

* We assume the underlying data
density is given by P_data.

- » With our knowledge in statistics, we
x ﬁ know that we can train our properly
ros o Vot | . normalized statistical model to
< estimate the underlying data

W.' ' density using methods such as

maximum likelihood.

—3
Training data Probability density function
1, %, Xn} % Paata(X) Po(X) ~ Paata(X)

31
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Flexible models
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Score models can be estimated from data
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Score function

So(Xx) & Vx 10g pgata(X)

» But because we want to work with
score functions, we want to develop
a similar approach that can allow us
to train our score model to estimate
the underlying score function from a
limited set of training data points.

* And we have formulated this problem
score estimation.

32
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[Flexible models]

Flexible models » Mathematically, we are given a bunch

of data points which are assumed to

Score models can be estimated from data be 11D sampled from the data
distribution P_data.

» Our goal is to estimate this score

Given: {le Xo, ", XN} . Bl (X) function of the data density.

. * We are given a score model. This is
Goal: vV, log pdata(X) . ; assumed to be a deep neural
Score Model: 3g (x) ‘R -5 R ~ Vx log Pdata (X) network model that maps the deep

. ; ] dimensional input to a deep
Objective: How to compare two vector fields of scores? dimensional output, and we hope to

train this score model such that it
approximates our ground truth
score function of the data
distribution.

» So how can we train this score model
to be close to our ground truth data
score function?

* Well, we need to minimize a certain
objective. This objective has to
compare two vector fields of score
functions.

33
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Diffusion and Score-Based Generative Models

[Flexible models]

Flexible models  Here, one vector field is the ground

Score models can be estimated from data

Given: {Xl, gy, v ;XN}

vx log pdata(x)
Score Model: so(x) : R? - R? ~ Vy 10g pgata(X)

Objective: How to compare two vector fields of scores?

N NN/ /S
R W

~ Pdata

NN\
e S S

sg(x) ey —
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truth data score function.

* The other vector field is predicted by
our score model.

» How can we compare the difference?
Let's recall that those two vector fields
actually lie in the same space.

s
e

\
A

e\
B

34



Diffusion and Score-Based Generative Models

[Flexible models]

CVPR2022 Tutorial — Yang Song
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Flexible models » So we might be able to compute the

difference vectors between those pairs

Score models can be estimated from data of vectors from the original vector

Given: {x;,Xs, - - ,Xy}

vx 108 pdata(x)
Score Model: s¢(x) : R? » R? ~ V4 10g pyata(X)

~ Pdata

fields.

* And then we can [INAUDIBLE] over
the densities of those difference
vectors to form a single scalar-
valued objective.

Objective: How to compare two vector fields of scores?
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Diffusion and Score-Based Generative Models

https://www.youtube.com/watch?v=wMmqCMwuM2Q

[Flexible models]

Flexible models

Score models can be estimated from data

Given: {x;,Xo, -, Xy}

vx log pdata(x)
Score Model: so(x) : RY - R? ~ V 10g pgata(X)

Objective: How to compare two vector fields of scores?

~ s9(x)|l5]

~  Pdata

pdata(x) [” Vx log pda-t'd- (X)
(Fisher divergence)

o) [V 108 B 6) — 860) 2]
(Fisher divergence)

Mathematically, we can capture this
intuition with the Fisher divergence
objective.

Fisher divergence is essentially an
expected squared Euclidean
distance between the data score and
the model score averaged over
samples from the data distribution.

However, Fisher divergence cannot be
directly computed because we don't
know the ground truth value of the
data score function.

But luckily there is a way to address
this challenge,
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[Flexible models]

Flexible models .

Score models can be estimated from data

Given: {xi,Xs, - ,Xn} Hie Pdata (X) '
Goal: V, log pyata(x)

Score Model: s¢(x) : R » R? ~ V, 10g pgata(X) .
Objective: How to compare two vector fields of scores?

1

§Epdata(x) [||Vx IOg Pdata (X) — 8¢ (X) ”g v

(Fisher divergence) Integration by parts
(Gauss's theorem)

Score Matching [Hyvarinen 2005]:

1
Byt 5 80(X)l13 + trace( Vicso(x) )
1 N 1 Jacobian of sg(x)
L — . 2 .
~ v 23 5 Il + trace(Pxo) |

trace &2 : [HZHM QA 9|

o
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This method is called score matching.
Score matching uses integration by
parts of Gauss's theorem to convert
Fisher divergence into the following
equivalent objective.

The objective at the bottom is
equivalent to Fisher divergence up to
a constant.

But since constants do not affect
optimization, their score matching
objective defines the same optimum
as the Fisher divergence.

In a score matching objective, there is
no dependency on the score
function of the data distribution
anymore.

Moreover, the expectation in score
matching can be efficiently
approximated using the empirical
mean over the training data set.

So, so far, so good.
However, the score matching objective

3/
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Diffusion and Score-Based Generative Models

[Flexible models]

Flexible models » However, the score matching

= - objective is not scalable to compute,
Score Matchlng IS not scalable especially when you want to use deep
neural networks to model high-
dimensional data points.

. Deep score models » Let's suppose our score function is
parameterized by our deep neural

network, which we call deep score
models.

* In order to use score matching we
have to compute two terms, where
one term is the squared Euclidean
norm of the score model output.
The second term is the choice of the
Jacobin of the score model.

«  Compute ||S.9(x)||§and trace(Vxsg(x))
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[Flexible models]

Flexible models * For the first term, it is super simple to
= - compute and very efficient because
Score Matching is not scalable we just need [INAUDIBLE] forward

propagation to get the output. Then we
can compute the squared L2 norm

-+ Deep score models very efficiently.

» For the second term things become a
little bit more complicated because we
need one forward propagation to
compute the first element of the
score function output, and we need
a backpropagation to compute the
first element on the diagonal of this
Jacobian.

- Compute [sa(x)[3and trace(Vyse(x))

39



. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

[Flexible models]

Flexible models  This procedure has to be repeated
- = multiple times until we have recovered
Score Match|ng IS not scalable all diagonal elements on the Jacobian.

Then we can sum over the diagonal
elements to get the trace.

2
. CompUte ||SG (X) ||2 and t1'3'(3@(vx59 (X)) « This whole procedure requires a lot of

0sg.1(x) backpropagations.
0x a?a'lTx'). 8501 (x)  Dse.1(x)
as i-x')' 33612():) asar (x)
Vxse(x) = o o e
Osg 3(x) Osga(x) Isg.3(x)
E 3:::1 632 81:3
689 1 (X)
ox, @ '33-9-1?;% Ose, 1(x) 0s9,1(x)
dz3z
-
039 2(x) VS0 (%) = 583;}%7 ,asg;’,j"" 950 z(x)
) s0.5(x) ‘05500 las,, 3‘(,31
mz dxy Oxn __(933_
Jsg 3(x)
6273
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[Flexible models]

Flexible models  This whole procedure requires a lot of
- - backpropagations.
Score Matching is not scalable + And the number of

backpropagations actually is

. Compute |[se(x)||5and trace(Vyse(x)) Pt oo menstonality of
0sg,1(x) « For modeling high-dimension data like
om G o oy oSS NE TG nesdto e

@ Vxsg(x) = as'g‘;f}"" asgﬁj"’ asg;;f’" * And this means score matching in its
8s03(x) 9sea(x) sea(x) naive form is not scalable.
@ 9z, 922 dz3
O(#dimensions of x)
Dsg.1(x) Backprops!
oz, @ !6;9._1T’(-): 9s0,1(x)  se,1(x)
_ ['22hd moatat ssoatx)
639,2 (X) @ VySe(X) = Hsg;l i SaT '
oz el ogohe Hiet
9595
62'23
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[Score Model - Sliced Score Matching]

Flexible models + To address this challenge, we actually

propose a more efficient variant of

Sliced Score matChing score matching which we term sliced

score matching.

. Intuition: di . | bl hould b . * The basic intuition is that one-
nwurion: one dimensional problems snou € easier dimensional problem should be

- ldea: project onto random directions much easier to solve than those high-
dimensional problems.

» How can we convert a high-

NNA// 0 NN\N\// ety
N /7

* Well, we can leverage random

\ \ N S \ \ projections. We project the high-
: : dimensional vector fields to run
IIIIIIIIIIIIIIIIIIIIIIII EIIIIII EEEEEEN IIIIIIIIIIIIwIIIIIIIIIIIIIIIIIIIIIIIIIIIIIEIIIIIII EEEEEEE N, EEEEEEEN directions. Then We getone-

dimensional scalar fields.

\ + Suppose those two high-dimensional

\ vector fields are close to each other.
Then we can project them along
random one-dimensional directions.

\ \ This gives us one-dimensional scalar
fields. Those scalar fields will also be

Random Direction Vector v close to each other.
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[Score Model - Sliced Score Matching]
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* [Random Project from mD to 1D]

* We project the high-dimensional
vector fields to run directions. Then
we get one-dimensional scalar fields.

» Suppose those two high-dimensional
vector fields are close to each other.
Then we can project them along
random one-dimensional directions.
This gives us one-dimensional scalar
fields. Those scalar fields will also be
close to each other.
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[Score Model - Sliced Score Matching]

Flexible models » We can capture this intuition with the

concept of sliced Fisher divergence.

Sliced Score matChing * Here v denotes the projection

direction. It is a vector. And pv
denotes the distribution of those
projection directions.

* Intuition: one dimensional problems should be easier

* ldea: project onto random directions « We compute the inner product
3 5 : . . . [INAUDIBLE] v and those two school
« Randomized objective: Sliced Fisher Divergence functions and measure the resulting

difference between them.

1 : » And we can again leverage integration
—E vEpdam(X) [(VT Vx log pdata(x) o= VTS() (X) )2] by parts to eliminate the dependency
2 on the ground truth data score. This
gives us the sliced score matching
» Integration by parts > Sliced Score Matching: objective.

* And in sliced score matching, there is
no trace of a Jacobian anymore.
E. E E;,'T'%,“S"(")'v': 4 1 (VT so ))2 Instead, we have vector Jacobian
Pv “Pdata(X) [i xS\ X)Vi 9 SgAX vector product. This term is much

I' more scalable to compute.

Sca fable!
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[Score Model - Sliced Score Matching]

Flexible models « This is actually not hard to see

because we can rewrite the vector

Computing Jacobian-vector products is scalable Jacobian vector product as an

alternative for on the right-hand side.

» This just requires us to swap the
location of v and S_theta within the

vT Vx59 (X)V = il Vx (VT Sg (X) ) gradient operator.

e @ * So now | will show you how to
compute this vector Jacobian vector
@ @ product very efficiently.

Song*, Garg*, Shi, Ermon. "Sliced Score Matching: A Scalable
Approach to Density and Score Estimation.” UAI 2019.
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[Score Model - Sliced Score Matching]

Flexible models

Computing Jacobian-vector products is scalable

 First, we just need one forward
propagation to get the output of
s_theta,

Song*, Garg®, Shi, Ermon. "Sliced Score Matching: A Scalable
Approach to Density and Score Estimation.” UAI 2019.
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[Score Model - Sliced Score Matching]

Flexible models

Computing Jacobian-vector products is scalable

* and then we can directly compute the
inner product between v and s_theta.

+ So this amounts to adding one
VT Se (X) additional neuron to the computational
graph.

* And next, we can compute that
gradient

Song*, Garg*, Shi, Ermon. "Sliced Score Matching: A Scalable
Approach to Density and Score Estimation.” UAI 2019.
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[Score Model - Sliced Score Matching]

Flexible models

Computing Jacobian-vector products is scalable

* And next, we can compute that
gradient by doing one
backpropagation.

Song*, Garg*, Shi, Ermon. "Sliced Score Matching: A Scalable
Approach to Density and Score Estimation.” UAI 2019.
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[Score Model - Sliced Score Matching]

Computing Jacobian-vector products is scalable

One BaCkprop! * And as the last step, we just need to

Sliced Score Matching computer the inner products in the
. [INAUDIBLE] gradient.
is scalable

» So the whole procedure only requires
one backpropagation, which is much
more efficient compared to the vanilla
form of score matching.

Song*, Garg*, Shi, Ermon. "Sliced Score Matching: A Scalable
Approach to Density and Score Estimation.” UAI 2019.
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[Score Model - Sliced Score Matching]

Flexible models

Sliced score matching

« Sample a minibatch of datapoints {x1,%X3,°* ,Xn} ~ Ddata(X)
» Sample a minibatch of projection directions {vy,vs, - - ,v,} ~ py
« Estimate the sliced score matching loss with empirical means

%i [VIVXSe(xz-)Vz' ¥ %(V’TSG(X")P]
i=1

. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

This is how sliced score matching
works in practice.

We just a sample a minibatch of data
points from our data set.

And for each data point, we sample
one single projection direction from our
distribution of pv.

And then we form the empirical
estimate of the sliced score matching
training objective using the empirical
mean over our sample data points and
those projection directions.
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[Score Model - Sliced Score Matching]

Flexible models

Sliced score matching

« Sample a minibatch of datapoints {x1,%X3,°* ,Xn} ~ Ddata(X)
» Sample a minibatch of projection directions {vy,vs, - - ,v,} ~ py
« Estimate the sliced score matching loss with empirical means

1 v 1

=53 [v{vxs(,(x,-)vi + §(v}s(,(xi))2]

i i=1

« The projection distribution is typically Gaussian or Rademacher
« Stochastic gradient descent
« Can use more projections per datapoint to boost performance

. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

So the projection distribution pv is
typically a simple standard Gaussian
distribution or sometimes better you
can use Rademacher distributions,
which are uniform distributed sine
vectors.

And then we can use stochastic
gradient descent to minimize our
empirical objective for sliced score
matching.

And if you want a better performance
or equivalently lower variance of our
training objective, you could potentially
use more projections per data point.

So that concludes the discussion of
sliced score matching.
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[Score Model — Denoising Score Matching]

Flexible models » There exists another approach called

denoising score matching that can

Denoising score matching also bypass the computational

challenge of vanilla score matching.

» The idea of denoising score matching
is to add additional noise to the data
l point to help us compute the choice
of a Jacobian term.

Pdata (X) « To perform to denoising score

matching, we need to design a

X perturbation kernel which we denote
¥ as q_sigma. So x_tilde denotes the

qo. ( ). 4 | X) perturbed data point, and x denotes

the original noise-free data point.

Sigma can typically be a Gaussian

+ distribution with means x and a

standard deviation sigma.

» So after converting this perturbation
kernel with our original data
distribution, we get a noisy data

X distribution to sigma of x_tilde.
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[Score Model — Denoising Score Matching]

Flexible models » The key idea of denoising score

matching is to estimate the scope

Denoising score matchi ng function of this noise data density
instead of the score function of the
original data density.

» Of course, when sigma is very small,
 Matching the score of a noise-perturbed distribution Aol 3??521122?3%'3% t;‘:t‘:‘]?re

pdata, (X) equivalent to the scope function of the

1 i 11 2 noise-free density.
SE,, [V log 4. (%) — sa (%) ]

+ The magic happens when you
estimate this score function of a noisy
distribution.

* You can use some arithmetic
derivation to write down an equivalent
form to the denoising score matching
objective, which | give at the bottom of
this slide.
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[Score Model — Denoising Score Matching]

Flexible models

Denoising score matching

. * Matching the score of a noise-perturbed distribution
pdata(x) 1
~\ 12
N ” SE,, 9 [1Vx 10g 4, (%) — 8o (R)113]
9o ( | X) * Denoising score matching (Vincent 2011)
‘r . : 1 : ................................ é - 2
1o(%)  ErunoBa, (o IV 108 60 (X | x):= 0 ()]
\
. Scalable

. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

» So you can use some arithmetic

derivation to write down an equivalent
form to the denoising score matching
objective, which | give at the bottom of
this slide.

In this new form, what we need to
compute is just the gradient of the
perturbation kernel.

Because we designed the perturbation
kernel by hand, usually this
perturbation kernel is a fully tractable
distribution. Computing this gradient
is very efficient, and it can be done
analytically.

54



. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

[Score Model — Denoising Score Matching]

Flexible models

Denoising score matching

* Matching the score of a noise-perturbed distribution

pdata (X) 1 + But the [INAUDIBLE] known as score
__ L (12 matching is that since it requires
9 E [” : S0 (X) ” ] adding noise to data points, it
X :
¥ cannot estimate scores of the
o ( X | X) noise-free distributions.

* Denoising score matching (Vincent 2011) . And what's worse, when you're trying

to lower the magnitude of the noise,
’ 1 B B [“V 1 ( | ) ( . ”2] the variance of denoising score
q-(x) r . = % 1l0og gy (X | X) —Sg(X matching objective actually
/ " 2 Pdata(X) g0 (%|x) & ) 2 becomes bigger and bigger and

eventually explodes.

~ + Cannot estimate scores of noise-free distributions! - There is no easy way to use
X denoising score matching for noise-
free score estimation.
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[Score Model — Denoising Score Matching]

Flexible models » So we can actually derive the formula

Denoising score matching

pda.ta,(x)

CVPR2022 Tutorial — Yang Song

* Denoising score matching (Vincent 2011): Matching
the score of a noise-perturbed distribution

—J 0 (X)Vx log ¢, (X)" 8(%) dX

~

~

™~

1
Jo(X)- Vo (X) 89(X) dx

4o (X)
V4o (X)"85(X) dx

~ T ~ ~
vf( ( JP(!;lt;l(x)(IU(x | X) (IX) S{)(X) dx

.
( J Paata(X) Vo (X | X) (lx) s(%) dx

—J (,[pdma(x)q“(i | X)Vixlog g, (X | x) dX)TSo(i) dx
- fjpdata(x)Qa(i | X) Vi log g, (X | x)"84(X) dx dx

= — B pasea (x),%~0 (&%) [V 108 g0 (X | X)"84(X)]

https://www.youtube.com/watch?v=wMmqCMwuM2Q

with denoising score matching very
easily.

But | guess due to time reasons, we
have skip this part.

And it's not hard to find this derivation
from the original paper of denoising
score matching.

56



. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

[Score Model — Denoising Score Matching]

Flexible models  As a conclusion, when you want to

apply denoising score matching, you

DenOiSing sScore matChing follow a similar procedure as sliced

score matching.

— . + First of all, you sample a minibatch of
- Sample a minibatch of datapoints {X1,X2, """ ,Xn} ~ Pdata(X) data points from tho data density
. mple a minibatch of r in X1,X9, " ,Xnt ~ (g (X
Sample a batch of perturbed datalpo ts { 1,22, ? n} qu( ) « And then you sample a minibatch of
X; ~ Qo (xz- | xz-) perturbed data points.
- Estimate the denoising score matching loss with empirical means » So usually for one data point, you
¢ sample a single perturbed data point
1 - . 9 by adding the additional amount of
om [I|se(X:) — Vxzlog go (X: | x:)||5] noise to the chosen data point.
i=1

* And then you can form the empirical
estimation of the denoising score
matching loss by approximating the
expectation using empirical means.
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[Score Model — Denoising Score Matching]

Flexible models

Denoising score matching

+ Sample a minibatch of datapoints {X1,X2," " ;Xn} ~ Ddata(X)

- Sample a minibatch of perturbed datapoints  {X1, X2, ,X,} ~ ¢o(X) . Inthe special case of Gaussian

Xi ~ (g ()’"{z | Xz’) perturbations, you can further simplify
. L. . . . the denoising score matching loss
+ Estimate the denoising score matching loss with empirical means function.

1 o N _ .
o [||8e(X:) — Vi log q,(X; | xz)||§] « Then you can just apply stochastic
L i=1 1 gradient descent to minimize this

' . objective function to train your score
- If Gaussian perturbation e Y
2] * In practice, if you want it to work well

n
o 0 [t + =5
n 9 ! 02 ) for estimating score functions of noise-
=1 free data densities, you need to
choose a very small sigma.

+ Stochastic gradient descent
+ But as | said, when sigma is very small,

* Need to choose a very small g! the variance of this objective will
explode. So there is a tradeoff, and
you need to find the sweet spot.
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[Score Model]

Flexible models « Some experimental results.
= . * We first tt th
Results: Sliced Score Matching for EBMs computational efficiency of sliced

score matching (SSM) and also
denoising score matching (DSM)

Sliced score matching methods Other Baselines Score Matching versus the vanilla version score
matching (SM).

» We consider the problem of training

| SR energy-based models (EBM), or,
¢ Pg— equivalently, we are considering the
© /’ — DSM problem of training score functions
Do / — CP from noise-free data.
@ // —— Approx BP
g* ! ' N — EH « The first figure shows how much time
S / is needed to perform each iteration of
0 ,.’ various algorithms as a function of
s ) e e e e data dimensionality.

0 W0 0. 0 400 800 &0 Mo P00 * When data dimensionality increases,

Data Dimension all those algorithms will take more time

to perform one training iteration.

Efficien Cy - Clearly, score matching (SM) scales

the worst. In contrast, Sliced Score

Song*, Garg*, Shi, Ermon. "Sliced Score Matching: A Scalable Matching (SSM) and Denaising Score
Approach to Density and Score Estimation." UAI 2019, Matching (DSM), they scale much
more preferably compared to score

matching.
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Diffusion and Score-Based Generative Models

[Score Model]

Flexible models * And in terms of the actual

. » performance of score estimatipn,
Results: Sliced Score Matching for EBMs we report the results on the left figure.
The performance is better when the
number is lower.

Sliced score matching methods Other Baselines Score Matching » Comparing sliced score matching and
score matching, you can see that even

though sliced score matching takes
much less time to compute, they can

__WhiteWine

- - - ‘--“
= - : : still obtain more or less comparable
2 ' 2 | == SSM-VR performance as score matching in
-10 ! v e
g 2 | — SSM terms of score estimation.
A A
: : : - == DSM » Really, we gain a lot of computational
—20 ' 0 v : rmm CP boost at a small cost of the accuracy in
' 2 ' *mmm Approx BP score estimation.
-30 2 i - E el « For Denoising Score Matching (DSM)
. W— Lacet because you have to inject noise to
U the data point, the performance in
score estimation is not as good as
Effici Performance on sliced score matching when you want
IClenc a . . to estimate the score function of a
y density estimation clean data points,

« Garg®, Shi, Ermon, "Sliced Mstihinc A Scatatis So everything is where we expected.
Approach to Density and Score Estimation." UAI 2019.
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Diffusion and Score-Based Generative Models

[Flexible Models]

» So now | have discussed how working
. . . with score functions allow very flexible
Score-based generative modeling: outline models because score functions
bypass the challenge of a normalizing
constant, and we can use principled
statistical methods like score matching,
sliced score matching, or denoising

Improved Probability sco(;elm?tchircljgtto train those score
: ; models from data.
generation evaluation

+ Bypass the
normalizing constant
* Principled statistical

methods
[Song et al. UAI 2019 oral] [Song & Ermon. NeurlPS 2019 ] [Song et al. ICLR 2021 oral]
[Song & Ermon. NeurlPS 2020] [Song et al. NeurlPS 2021 spotlight]
[Song et al. ICLR 2021 oral]
(Outstanding Paper Award)

[Song et al. ICLR 2022]
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[Improved generation]
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As a quick recap, we know that,
given a large training data set, we
can use principaled statistical
methods like score matching to train
our score model to estimate the
underlying score function.

In order to build our generative
model, we have to find a certain
approach to create new data
points from the given vector field
of score functions.

So how can we do this?

Well, suppose we are already given
the score function.
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CVPR2022 Tutorial — Yang Song
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scattered across the stairs.

Can we move those random points to
form samples from the score function?

* Well, one idea is we can potentially
move those points by following the
directions predicted by the score
function.
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Improved generation

Sampling from score functions: Langevin dynamics
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* However, this will not give us valid
samples because all of those points
will eventually collapse into each
other.
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Improved generation + But this problem can be addressed if
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we follow a noise inversion of the

Sampling from score functions: Langevin dynamics score function.
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Improved generation * And itis also well known that if we

Sampling from score functions: Langevin dynamics
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Follow the noisy scores

Correct samples

guaranteed

keep this sampling procedure long
enough to reach convergence, and if
we set the step size to be very, very
small, then Langevin dynamics
[INAUDIBLE] to give you the correct
samples from the score function.

This is the details of Langevin
sampling.
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Improved generation

Langevin dynamics sampling

+  Sample from Pp(X) using only the score Vy log p(x)
* Initialize x’
 Repeatfor t <« 1,2,---,T

zt ~N(0,1)

xt —xt1 & %Vx log p(x*~1) + /€ 2

~ 7(x)

. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

The goal is to sample from some
density px using only the score
function-- the gradient of px.

The procedure of Langevin dynamics
is as follows

First, we initialize our sample from
some prior distribution. This prior
distribution can be very simple. It can
be a Gaussian distribution or a uniform
distribution.

Then we repeat the following
procedure multiple times.

In each of the sampling steps, we first
generate a random Gaussian vector
from the standard Gaussian
distribution.

And then we modify x according to
following recurrence equation; We
basically update the previous sample
using our score function plus a scaled
version of the Gaussian noise vector.
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[Improved generation]

Improved generation

Langevin dynamics sampling

- Sample from p(x) using only the score Vy log p(x)

ew e 0
* Initialize x" ~ W(x)  If you set epsilon to something very
. close to 0, and if you set the total
g Repeat for 1 < 1’ 2’ ’ T number of iterations, T, to be large
¢ enough, then we are guaranteed to
Z ~ N(O: I) ' obtain a valid sample from the
€ underlying density of the score
xt — x4 §Vx log p(x*™!) + /e 2 function.
* Now we know score matching can

4 &

« Ife—>0andT - oo, we are guaranteed to have x' ~ p(x) estimate the score function data.

* Langevin dynamics can generate
samples from the score function.

¢ Langevm dynamlcs + score estimation * |t becomes very natural to just replace

the score function in Langevin

dynamics with our score model, and
then we can generate data samples-
- we define a new generative model.

s9(x) ~ Vi log p(x)
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Improved generation

Score matching + Langevin dynamics

CIFAR-10 data Model samples

https://www.youtube.com/watch?v=wMmqCMwuM2Q

This approach sounds very nice from
the theoretical perspective, but it does
not work well in practice.

So here are the results of combining
score matching and Langevin
dynamics naively.

The left figure shows some images
from the CIFAR-10 data set. CIFAR-10
is a data set that contains many
images of size 32x32

The right figure shows you newly
generated samples by combining
score matching and Langevin
dynamics naively. Clearly you can see
that the newly generated samples do
not look realistic at all.
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[Improved generation]

Improved generation  This approach sounds very nice from

the theoretical perspective, but it does

Score matching + Langevin dynamics not work wel in practice.
* So here are the results of combining
score matching and Langevin

CIFAR-10 data Model samples dynamics naively.

* The left figure shows some images
from the CIFAR-10 data set. CIFAR-10
is a data set that contains many
images of size 32x32

* The right figure shows you newly
generated samples by combining
score matching and Langevin
dynamics naively. Clearly you can see
that the newly generated samples do
not look realistic at all.

“~— « There has to be something very wrong
with this simple naive approach.
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Improved generation

Challenge in low data density regions

Data density
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Estimated scores
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In our research, we identified several
challenges.

One interesting challenge is it is hard
to estimate score functions
accurately in low data density
regions.

To illustrate this challenge, let's
consider the prior example of a
mixture of Gaussian distribution again.

The left figure shows you the ground
truth density function. Middle figure
shows you the ground truth score
function. The rightmost figure gives the
estimated score function from score
matching.
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[Improved generation]

Improved generation * If you compare those two vector fields,
: : ; it's clear that the estimated scores are
Challenge in low data density regions accurate in high data density regions,

which are given by those green boxes.

» But for low data density regions, the
estimated scores are not accurate at
Data scores Estimated scores all.

""""" « This is not totally unexpected because
we use score matching to train our
score model, and score matching
compares the difference between
the ground truth and the model only
at samples from the data
distribution.

Data density

------

et o o S A
A ? b o
:..
\ I
I"lll-

ettt

* In low data density regions, we don't
know how many samples, and
therefore we don't have enough
information to infer the true score
functions in those regions.

lesstonyny

%Epd,,.m[llvx 10g Paata () — 50() 3]

[Song and Ermon. NeurlPS 2019 (oral)] 72
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[Improved generation]

Improved generation + And this is a huge obstacle for
= : 3 Langevin dynamics to provide high
Challenge in low data density regions quality samples because Langevin

dynamics will have a lot of trouble
exploring and navigating those low
data density regions.

Langevin dynamics will have trouble

exploring low density regions

[Song and Ermon. NeurlPS 2019 (oral)] 73
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Diffusion and Score-Based Generative Models
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» So how can we address this challenge?
* One idea is to inject Gaussian noise

Improved generation

Improving score estimation by adding noise to perturb our data points. So after

Perturbed density

adding enough Gaussian noise, we
perturb the data points to
everywhere in the space.

Estimated scores « This means the size of low data

Perturbed scores ! !
density regions becomes smaller.
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Improving score estimation by adding noise

Perturbed density

Diffusion and Score-Based Generative Models

Improved generation

Perturbed scores
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Estimated scores
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 In the context of image generation,

adding additional Gaussian noise
means we inject Gaussian noise to
perturb each pixel of the image.

So in this toy example, you can see
that, after injecting the right amount
of Gaussian noise, the estimated
scores now become accurate
almost everywhere.
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Improved generation

Improving score estimation by adding noise

High noise provides useful directional
information for Langevin dynamics.

But perturbed density no longer
approximates the true data density.

[Song and Ermon. NeurlPS 2019 (oral)]

. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

* This phenomenon is very promising

because it at least says that the score
function of noisy data densities are
much easier to be estimated
accurately, and those score functions
of noisy densities could provide
valuable directional information to
guide Langevin dynamics to move
from low data density region to high
data density regions.

But simply injecting Gaussian noise
will not solve all the problems.
Because of perturbation of data points,
those noisy data distances are no
longer good approximations to the
original true data density.

76



CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

Diffusion and Score-Based Generative Models

[Improved generation]

Improved generation * To solve this problem, we propose to

use a multiple sequence of different

Using multiple noise levels noise levels.

» So as a toy example, we consider
pcn (X) three noise levels from sigma_1 to
Sige, sigma_3.
*, * We used Gaussian noise on mean 0
Ik 22 and standard deviation from sigma_1

to sigma_3 to perturb our training data

Data

y set.
- & . L, e R—— « And this will give us three noisy
~ (YL . . .-.. . ‘.. . . -':-.-. % * ¥ . ; .
"?"; - et : J ' training data sets.

* For Each noisy data set, there will be a
corresponding noise data density,
which we denote as p_sigma 1 to
p_sigma 3

[Song and Ermon. NeurlPS 2019 (oral)] =
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[Improved generation]

Improved generation + So in the context of images,

perturbation using multiple levels of

USing mUItIple nOise IeVels noise will give you a sequence of

images demonstrated here.

Data

[Song and Ermon. NeurlPS 2019 (oral)]
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Improved generation

Data

Using multiple noise levels
Po, (X)

. .
i &y

......................
....................
....................

..............

.............
nnnnnnnnnn

o

-

i D

P T
PP P DR
P SR
A i
o,
-~

[Song and Ermon. NeurlPS 2019 (oral)]

et &

https://www.youtube.com/watch?v=wMmqCMwuM2Q

After obtaining those noisy data sets,
we want to estimate the underlying
density.

We want to estimate the underlying
function of the corresponding noisy to
the densities.

How can we estimate three noisy
score functions?

Well, the most naive approach is we
train three networks, and each network
is responsible for estimating the score
function of a single noise level.

But this is not a scalable solution.
Because in practice, we might require
much more noise levels.

For example, our image generation
would typically require hundreds to
thousands of noise levels.
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Using multiple noise levels
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https://www.youtube.com/watch?v=wMmqCMwuM2Q

A more scalable solution is to
consider a conditional score model,
which we call a noise conditional
score model.

A noise conditional score model is a
simple modification to our score model.

It takes noise level sigma as one
additional input dimension to the
model.

The output corresponds to the score
function of the data density
perturbed with noise level sigma.

How can we train this noise conditional
score model. Well, again, we can
leverage the idea of score matching.
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Improved generation

Using multiple noise levels
Pol(x). | paz( ) . pa§(x)

Positive weighting
function

r \ 2
NZ/\ 0'7, =po; (x)[”V logpoz( ) - SQ(X, 01)“2]
=1 Y 4

\ Noise level Score matching loss

Noise Conditional
Score Model

[Song and Ermon. NeurlPS 2019 (oral)]
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We have an important modification
with score matching to jointly train the
score model across all levels.

In this modification we have a
summation with score matching
losses.

We have one score matching loss
for each noise level sigma_i and we
have a positive weighting function,
lambda(sigma_i).

The value of this weighting function is
typically chosen using [INAUDIBLE]
heuristics. It can also be derived using
principled analysis of the problem.

We have this positive weighting
function just to balance the scales
of score matching loss across all
noise levels, and this is helpful for
optimization.

By minimizing this modified score
matching loss, if our optimizer is
powerful enough, and if our model is
expressive enough, then we will obtain
accurate score estimation for all noise
labels.
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We have an important modification
with score matching to jointly train the
score model across all levels.

In this modification we have a
summation with score matching
losses.

We have one score matching loss
for each noise level sigma_i and we
have a positive weighting function,
lambda(sigma_i).

The value of this weighting function is
typically chosen using [INAUDIBLE]
heuristics. It can also be derived using
principled analysis of the problem.

We have this positive weighting
function just to balance the scales
of score matching loss across all
noise levels, and this is helpful for
optimization.

By minimizing this modified score
matching loss, if our optimizer is
powerful enough, and if our model is
expressive enough, then we will obtain
accurate score estimation for all noise
labels.
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[Improved generation]

Improved generation « After training this noise-conditional
. . . score model, how do we generate
Using multiple noise levels samples?

Poy (X)

.
.

Data

e, | RS : * Well, one additional note is that this
.. . — ; mixture of score matching loss

- function is actually a generalization to
the training objective of the first
version diffusion probabilistic models

proposed in 2015.

.-,
>

So (X O') » A generalization to the training objective of diffusion . And this conmects score-based
; probabilistic models [Sohl-Dickstein et al. 2015] generative models to diffusion

* First unveiled by DDPM [Ho et al. 2020] models.

* The connection between score-
Noise Conditional based models and diffusion models
Score Model was first unveiled by the DDPM paper,
which was in 2020.

[Song and Ermon. NeurlPS 2019 (oral)] »
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B ot

So now, let's return to the question of
how to sample from the noise-
conditional score model after
training with the score matching
loss.

Well, we can still use Langevin
dynamics.

We can first apply Langevin
dynamics to sample from the score
model with the biggest perturbation
noise.

And the samples will be used as the
initialization to sample from the
score model of the next noise level.

And then we continue in this fashion
until finally with generate samples
from the score function with the
smallest noise level.
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[Improved generation]

Improved generation « We call this sampling procedure

annealed Langevin dynamics

USing mUItIple nOise Ievels because the rough intuition is we hope
to gradually anneal down the
Poy (X) Pos (X) temperature of our data density to

gradually reduce the noise level.

.
.

Data i

|

59(%.9) | Annealed Langevin dynamiiécs'f

Noise Conditional : o S

sg(x,01) Sé.(xa.dz) s¢(x,03)
[Song and Ermon. NeurlPS 2019 (oral)]

Score Model

85



CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

[Improved generation]

Improved generation * And this is what it looks like when we

. = ) apply this approach to modeling real
Score-based generative modeling in the real world images.

« So it's quite remarkable that we can
start from a random noise, then modify
those images according to the score
model, and this can eventually give us

a&vljk‘d@ — nice looking samples.
L% m;‘m Sl =
ol Ml
Bl 2SS L IEE

[Song and Ermon. NeurlPS 2019 (oral)]
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[Improved generation]

Improved generation * And this is the result of this simple

noise conditional score model

Quantitative results on CIFARO0-10 approach in 2019.

* So we provided similar scores of
CIFAR-10 data set. Those inception

Model Incopfion  HID ST
CIFAR-10 Unconditional Models i torms of sample qualty.
PixelCNN [59] 4.60 65.93 * This was the first time that a different
PixelIQN [42] 529  49.46 of achieving hgher mcspton score,
EBM [12] 6.02 40.58 « Of course FID score is stil[ Iagging
WGAN-GP [18] 7.86 = .07 36.4 23Rlengu?[?rll\sllsngbr;ait;hs?;t;)ﬁe[;:ggian
MolLM [45] 790+ .10 18.9 already outperform GANs inone
SNGAN [36] 822 =} 05 217 ;n;g;):ant metric, which is the inception
ProgressiveGAN [25] 8.80 & .05 -

NCSN (Ours) 887+.12 25.32

[Song and Ermon. NeurlPS 2019 (oral)]
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Improved generation

GANs were the best for sample generation

“(GANs are) the most interesting idea in
the last 10 years in Machine Learning”

Years of extensive engineering from
Yann LeCun Google, Nvidia, Facebook, OpenAl...

Turing Award 2018

Beat GANs on CIFAR-10 for the

first time! (in Inception Score)

[Song and Ermon. NeurlPS 2019 (oral)]

CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

So why it is important to outperform
GANs? Because GANs were the best
generative model for sample
generation, especially for images, for
quite a while.

As Turing Award winner, Yann LeCun,
has said, are the most interesting idea
in the last 10 years in machine
learning.

Indeed GANSs have attracted a lot of
research efforts from big corporations
and universities, and people have
improved GANs so much-- spent so
much engineering effort on it— it is
amazing to see that GANs can
generate very nice-looking images.

But it is quite amazing that we can
actually outperform GANs with score-
based generative models. And with the
resources available in academia,
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[Improved generation]

Improved generation * So why it is important to outperform
GANs? Because GANs were the best

GANs were the best for sample generation generative model for sample

generation, especially for images, for
quite a while.

= . . . . * As Turing Award winner, Yann LeCun,
(GANS are) the most mtereSth idea in has said, are the most interesting idea

the last 10 years in Machine Learning” :n the last 10 years in machine
earning.

* Indeed GANs have attracted a lot of
research efforts from big corporations

Yann LeCun Years of extensive engineering from and universities, and people have
. i improved GANs so much-- spent so
Turing Award 2018 Google, Nvidia, Facebook, OpenAl... mch ongincering effort on Tt t i

amazing to see that GANs can
generate very nice-looking images.

[Song and Ermon. NeurlPS 2019 (oral)]

89



. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

[Improved generation]

Improved generation « But it is quite amazing that we can
" actually outperform GANs with score-
GANs were the best for sample generation based generative models.

« And with the resources available in
academia, we actually do not have
much capability to tune those kind of
score models well enough, so
especially considering the imbalance
between computer resources and
engineering efforts spent on GANs
and score-based models, | consider
this a very surprising achievement.

Beat GANs on CIFAR-10 for the

first time! (in Inception Score)

[Song and Ermon. NeurlPS 2019 (oral)]
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[Improved generation]

Improved generation = » So, of course, noise-conditional score
" : ] , models can be applied to other types
High resolution image generation of image generation tasks, including

images of different objects and of
different resolution.

* With some later development score
matching techniques and neural
network model architectures, we can
further improve the sample quality of
CIFAR-10.

» And Of course, nowadays, diffusion
models

Song and Ermon. NeurlPS 2020.
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Improved generation

State-of-the-art sample quality on CIFAR-10
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[Song et al. ICLR 2021 (Outstanding Paper Award))

CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

* Nowadays, diffusion models have

captured so much attention, and
people are now working on diffusion,
trying to improve their various
perspectives.

* It's not unexpected that people are

achieving better and better quality
using diffusion models or score-based
models.

* In this work, we, again, data set of

CIFAR-10.

» The left figure shows some existing

training images from the CIFAR-10
data set.

» The right figure shows the newly

generated samples from this improved
approach. So now you can see new
regenerative samples look very
realistic and very diverse. They are
also different from existing training
images. You cannot generate such
images by simply memorizing the
training data set.
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[Improved generation]

Improved generation * And again, we compare with the best

' approach in terms of FID scores and
State-of-the-art Sample quallty on CIFAR-10 inception scores. So now we are able
to outperform the best GAN approach

in terms of both FID scores and
inception scores.

« And this means score-based models
Cha“enges the Iong-time can challenge the long-time

- dominance of GANs in every
dominance of GANs generation.

StyleGAN2-ADA (Karras et al. 2020) 292 9.83
Ours

[Song et al. ICLR 2021 (Outstanding Paper Award)]
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[Improved generation]

Improved generation * The same approach can be extended
to generate images of very large

High-fidelity generation of 1024x1024 images resolution.

* So here are two samples generated
' from a score-based model. Each one
has the resolution of 1,024 by 1,024.

* And here are more such samples from
the same model with same resolution.
So you can see the samples are very
high quality quite comparable to the
best GAN approaches [INAUDIBLE]
time.

[Song et al. ICLR 2021 (Outstanding Paper Award)]
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Diffusion and Score-Based Generative Models

.

Improved generation

Control the generation process

CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

* One remarkable property of a score-
based generative model training is the
capability to control the generating
process in a principled way.

* Suppose we are given an
unconditional score-based generative
model that generates images of dogs--
that generate images of both dogs and

cats, but we want to only generate the
images of dogs. So how can we do
that?

+ Let's suppose we are given a forward
model. This forward model is
basically an image classifier that

W e
At
- Image classifier
Forward model ply X
Control signal y = “dog" -

E
Inverse distribution

gives us the label of an image y from
an image Xx.

+ We want to specify a control signal which is a
target label y.

+ We want to specify the target label to be dog,
and then we hope to sample from the
conditional distribution of x given y.

» This conditional distribution will provide images
of dogs only. It is called the inverse distribution
because we can view it as a probabilistic inversion
of the forward model.
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Improved generation

Control the generation process

Inverse distribution

CVPR2022 Tutorial — Yang Song
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a

Bayes’ rule for score functions:

Vxlogp(x | v) =V log p(x)

=V, log p(x) H+ V.dlog p(y | x)!
Calgnml V~log AL

Unconditional score Forward model
~ SQ(X)

How can we obtain this inverse
distribution?

The standard approach is to leverage
the Bayes's rule.

In Bayes's rule we have access to the
unconditional distribution px.

We are given the forward model, but
we don't know the denominator.

This denominator is exactly the
normalizing constant of the inverse
distribution.

This means we can use score
functions to again bypass this
challenge in Bayes's rule, and we can
derive the Bayes's rule for score
functions very easily. So the
derivation is very simple.

We just take the logarithm on both
sides of Bayes's rule and then take the
gradient

Again, we can find that the only term
that depends on the denominator goes
away. 96
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[Improved generation - Inverse Distribution]

Improved generation

Control the generation process

* This means we can use score
functions to again bypass this
challenge in Bayes's rule, and we can
derive the Bayes's rule for score
functions very easily.

* We just take the logarithm on both
sides of Bayes's rule and then take the
gradient. Again, we can find that the
only term that depends on the
denominator goes away.

Bayes’ rule for score functions:

Vxlogp(x | y) =Vilogp(x) + The score function of the inverse
+ V. logn(v | x distribution now becomes a simple

r-..";..'...-.’-..'-, summation with two terms.
—iVx log pl ‘E 0 * The first term is the unconditional

g : T ———— score function that can be
==_Vx logp(x) r+ Vxilog ply | x)! estimated by training an
YT ! e & T unconditional score model.
L P(X ‘, - Unconditional score Forward model * The second term is the gradient of
o ~ 8g(x) the log forward model.
Inverse distribution
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[Improved generation - Inverse Distribution]

Improved generation

Control the generation process

* In this particular application,
conditional image generation, the

Bayes’ rule: forward model is the classifier, and
0___ ______ _° the gradient can be very easy to
,J)Qxi, y | X) compute using backpropagation.
(x|y)= 'L(m‘“ + In some other applications, this
1P\ forward model might be manually
specified, and the gradient is actually

! . analytically tractable in most cases.
Bayes’ rule for score functions:

) ) * The nice thing of this decomposition is
Vx 1”3 1)()( 1 J ) =Vx l()g p(x) now we can plug in different forward
models or exactly the same score
model. Which means we only need to
train an unconditional score model
once.

* Then we can repurpose this
unconditional score model for various

Plug in different forward models for conditional generation applications just
the same score model by switching the forward model.

|

Inverse distribution
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[Improved generation - Inverse Distribution]

Improved generation » This is one example.
- . 242 : * We can train one unconditional
Controllable Generation: class-conditional generation score model of CIFAR-10 images,
then couple it with a classifier to
sy is the class label generate class conditional samples.
« 1y | % is a time-dependent classifier (classifier-guidance) + Here, the forward model is the time-
_ dependent classifier. It is time
class: bird class: deer A dependent because we consider a

sequence of score functions, and
this means we need to have become a
sequence of classifiers.

» So the figures demonstrates the
conditional generation results of
CIFAR-10 [INAUDIBLE] all from an
unconditional score-based model.

» And this approach has to been further
developed as classifier guidance or
classifier-free guidance in
subsequent works, and nowadays, it is
the standard technique used in all the
text-to-image generation approaches,
like DALL-E 2 or Imagen.

[Song et al. ICLR 2021 (Outstanding Paper Award)]
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[Improved generation - Inverse Distribution]

Improved generation * We can use an unconditional score-
, e based model for imaging painting.
Image Inpalntlng * Here the control signal is the

masked image.

* We only know some partial regions of
the image.

* And we want to sample from the
inverse distribution, which gives us
completed images from a partially-
observed image.

* In this case, the forward model can be
directly specified using our domain
expertise. So there is no need to train
a separate model for this task.

= S S R S sarll
- A =
B 4 V" v
Ground truth Masked images Inpainted images
Y x|y

Forward model can be directly specified
[Song et al. ICLR 2021 (Outstanding Paper Award)]
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Improved generation

Image colorization et

ariﬁanriﬂmrﬂ‘a

B (Sesa |

mo Aemg
SPTIE gy TV gy

Ground truth  Gray images Colorized images

y x|y

Forward model can be directly specified
[Song et al. ICLR 2021 (Outstanding Paper Award))

. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

Similarly, we can apply unconditional
score-based models for image
colorization.

And again, in this figure you can see
that our control signal is the gray
image, and we can infer the colorized
images from the gray images.

Now, further models can be specified
manually.

For this image in painting and the
image colorization tasks, we were
actually using the same unconditional
score model.
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[Improved generation - Inverse Distribution]

Improved generation » So this means that one score-based

. ] model can be used for both imaging
|mage COlorlzatlon - painting and the colorization,
demonstrating the flexibility of this
decomposition of the inverse score
function.

One score-based generative model for both

image inpainting and colorization.

Forward model can be directly specified
[Song et al. ICLR 2021 (Outstanding Paper Award))
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Resolution: 1024x1024

Diffusion and Score-Based Generative Models

CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

* And again, we can apply this approach
to larger-scale examples, such as
colorization for images from resolution
1,024 by 1,024.
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[Improved generation - Inverse Distribution]

mproved generatiol

» So the same approach can be applied
to convert stroke paintings to realistic

Stroke to image SyntheSiS images, and here is one example.

* Now, the stroke paintings become
the control signal, and we use an
unconditional score-based model
trained on realistic images only.

Stroke Painting to Image

» They have no idea of what a stroke
painting looks like. We can develop
the forward model by manual
specification using our domain
expertise.

b @
Stroke paintings Sampled images

y x|y
[Meng, He, Song, Song, Wu, Zhu, Ermon. ICLR 2022]
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[Improved generation - Inverse Distribution]

Improved generation * And this is another example,
language-guided image generation.
Language-guided image generation * In this case, we are based on an

unconditional score-based model
and the control signal becomes a
language description-- tree house in
the style of Studio Ghibli animation.

\ X ' '

4

(Prompt)
* The forward model is given by an

Treehouse In the , I
ki ok S sdte image captioning neural network.
style of Studio :
\/_L__ 7 ¢ l : * In this example, the score model has
Ghibli animation no knowledge of language at all,
but it is capable of generating
spatial images that conform with
i it i the language description.
! Forward model -
1 1
] f_. i 1
E pPLY ‘ X ) !
1
1 ) 1
E IS an image '
! captioning neurali
1
network. i

[ Work by @danielrussruss ]
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[Conditional Score based Generation Example]

Improved generation

Medical image reconstruction

X-ray source

Sparse-view
computed
tomography
(CT)

Forward model p(y | X) is glven by physical S|mulation E

Yang Song

: c . CVPR2022 Tutorial —
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

We can apply conditional score-based
generation for medical image
reconstruction. We consider the
special problem of computed
tomography. In this case, we use X-
rays to shoot through a human body.

Those X-rays will hit the detector to
form observations called sparse-view
sonogram.

We can invert this physical procedure
to obtain those cross-sectional medical
image.

So here the control signal is a
sonogram. The inverse distribution
gives you the conditional
distribution of medical images
given the sonogram.

We want to consider the problem of
sparse-view computed tomography,
meaning that we want to use as few X-
rays as possible to reduce radiation.
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[Conditional Score based Generation Example]

Improved generation + This is a very simple task for
; i . generative models because by
Medical image reconstruction training an unconditional

generative model on large-scale
medical images, our generative

models can actually learn what a
typical medical image looks like.

X-ray source

* It can learn very useful image prior,
and this can be subsequently used to
reduce the number of X-ray
projections.

* In this case, the forward model is
given by physical simulation.

» So there is no need to train any
separate conditional model on

Sparse-view capturing this forward model.
computed * And we can have some results on
tomography real-world CT data sets.

(CT)

= - - - - - - - - - - - - - - - LY

i Forward model p(y | X) is glven by physical S|mulation E
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[Conditional Score based Generation Example]

Improved generation * We can have some results on real-

" . ; world CT data sets.
Medical image reconstruction :

We consider the task of using 23
projections, while in contrast typical

Sparse-view CT (just 23 projections) traditional approaches require
hundreds to thousands of projections.

* FISTA: This is the result of a
traditional approach based on
compressed sensing.

PSNRTZ Better when higher » So using only 23 projections, you can

SSlM,LZ Better when lower see the medical image is quite blurry.

* Quantitatively, we compared the
performance of different algorithms
using PSNR and SSIM.

PSNR: 20.30, SSIM: 0.778

[Song et al. ICLR 2022]
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[Conditional Score based Generation Example]

Improved generation « Neumann Network, SIN-PRN : Here

are the results of two deep neural

Medlcal imann ronnanctriantian

FIIaY o ToUU | ou uoutun network-based approaches. So those
methods are based on mapping
Sparse-view CT (just 23 mrojections) projections directly to images. They
are kind of limited to a particular
PSNR: 20.30, SSIM: 0.778 PSNR: 22.78, SSIM: 0.603 PSNR: 31.76, SSIM: 0.882 PSNR: 35.23, SSIM: 0.912 training setting. In this case, since they

are trained on 23 projections, it is hard
to adapt them to a different number of
projections later.

* Ours : This is our fully unsupervised
approach. Because we only try one
unconditional score-based model, we
do not train any particular model
associated with these 23 projections.

+ So that means we can adapt the same
Ground truth model to different settings, like
changing the number of projections
later after training

FISTA Neumann network SIN-PRN

PSNR : Better when higher Outperforms deep learning methods
SSIM : Better when lower

specifically trained for 23 projections

[Song et al. ICLR 2022]
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[Conditional Score based Generation Example]

Improved generation

Medical image reconstruction

+ Both qualitatively and quantitatively,

. . . ; we can see that this score-based
Sparse-Vlew CT (just 23 prOIectlonS) medical image reconstruction
approach can actually outperformed

PSNR: 20.30, SSIM: 0.778 PSNR: 22.78, SSIM: 0.603 PSNR: 31.76, SSIM: 0.882 PSNR: 35.23, SSIM: 0.912 :
other deep learning methods.

* Even though this generative approach
is fully unsupervised, it does not bind
to a particular experimental setting.
While in contrast, existing deep
learning methods come to be limited to
a specific experimental setting.

» So similar success has also been
observed on accelerated magnetic
Ground truth resonance imaging as well.

AR Al e Outperforms deep learning methods Similar success on accelerated MRI
SEIM B eltepubemloker specifically trained for 23 projections e e
[Chung & Ye, 2021]

[Song et al. ICLR 2022] [Song et al., ICLR 2022]

FISTA Neumann network SIN-PRN
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[Conditional Score based Generation Example]
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Improved generation

State-of-the-art performance on various other tasks

Image generation
[Dhariwal & Nichol, 2021]

Audio synthesis
[Chen et al., 2021]

W o - ok

Text-to-speech generation
[Tae et al., 2021]

wE

Material design
[Xie et al., 2021]

Shape generation
[Cai et al., 2020]

Molecular conformation prediction
[Xu, Yu, Song, et al., ICLR 2022]

RIGOE

Time series prediction

[Tashiro, Song, Song, Ermon, NeurlPS 2021]

GP-VAE

https://scorebasedgenerativemodeling.github.io

There has been numerous
developments of score-based models
or diffusion models. We have obtained
state-of-the-art performance on many
other tasks. And this is already kind of
outdated at this time, but | think it's
worth mentioning anyways.

So we can generate high-quality
images for a much more complicated
data set like imageNet.

And we can obtain outstanding
performance audio syntheses, text-to-
speech generation, material design--
this is actually a paper by MIT
researchers-- and also shape
generation.

We can also use score-based
approaches for molecular confirmation
prediction and time series prediction.

And there is a website of score based
generative modeling.github.io that
includes a list of relevant works trying
to build upon the technology of
diffusion and trying to improve the
methodology of score-based
generative models.
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Diffusion and Score-Based Generative Models

[Probability Evaluation]

* Now | am talking about how score-
based generative modeling allows

Score-based generative modeling: outline flexible model architectures, allows

improved sample quality, with a
controllable generation procedure.

* In the last part of a tutorial, | will talk
about how we can compute
probability values accurately, and
how we can outperform existing
likelihood-based generative models

in terms of density estimation.

* Bypass the * Higher sample » Accurate probability
normalizing constant quality than GANs evaluation
* Principled statistical + Controllable » Better estimation of
methods generation data probabilities
[Song et al. UAI 2019 oral] [Song & Ermon. NeurlPS 2019 oral] [Song et al. ICLR 2021 oral]
[Song & Ermon. NeurlPS 2020] [Song et al. NeurlPS 2021 spotlight]
[Song et al. ICLR 2021 oral]
(Outstanding Paper Award)

[Song et al. ICLR 2022]
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[Probability Evaluation]

Probability evaluation

Data distribution

Data distribution

Polx)

Diffusion and Score-Based Generative Models

Infinite noise levels

Perturbed distribution

Pa, (x)

Perturbed distribution

Po, (x)

Perturbed distribution

paz(x)

Perturbed distribution

Po,(X)

CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

Perturbed distribution

Pa;(X)

Perturbed distribution

Po,(X)

So in order to compute accurately
probability values, we have to
generalize the previous framework
from using a finite number of noise
levels to using an infinite number of
noise levels.

Let's get some intuition first by
assuming our data distribution is a
one-dimensional mixture of two
Gaussians.

Let's start with three noise levels.
We have sigma one to sigma three.
And we use Gaussian noise of a
standard deviation from sigma one to
sigma three to perturb our data
distribution.

So if the noise level is large enough,
we can convert any data distribution
into a simple Gaussian distribution.

We may use a one-dimensional heat
map to represent each of those noisy
data densities.
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[Probability Evaluation]

Probability evaluation + With more noise levels, we have more

; ] heat maps.
Infinite noise levels

Data distribution Perturbed distributions

Po(x) pa,(X) Po, (x) pa;(x) Po,(x) Pas (x) Pas (x)
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[Probability Evaluation]

Probability evaluation + With more noise levels, we have more

; ] heat maps.
Infinite noise levels

Data distribution Perturbed distributions
x x x x x x x
Po(x) pa,(X) Po, (x) pa;(x) Po,(x) Pas (x) Pas (x)
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Diffusion and Score-Based Generative Models

[Probability Evaluation]

Probability evaluation

po(x)

pdata(x)

B \/

Infinite noise levels

Perturbed distributions

pe(X)
t €[0,T]

CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

In the limit of the infinite noise levels,
we have a continuous, two-
dimensional heat map that represents
an infinite number of noisy data
densities.

We use pt to represent each of those
noisy data densities, where tis a
continuous parameter ranging
between 0 and capital T, where capital
T, capital T is the fixed constant.

When t's at 0, t0 is the same of the
data density because we do not inject
any Gaussian noise and this time
instance

When t is capital T, the capital T
contains a lot of Gaussian noise.

It would be close a simple Gaussian
distribution, which we denote as pi X.
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[Probability Evaluation]

Probability evaluation

Perturbing data with stochastic processes

[V

Polx)

Diffusion and Score-Based Generative Models

Perturbed distributions

—— Stochastic process

CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

So suppose we are given this
sequence of infinite number of
noise levels.

How do we generate noisy data sets
for training our score models?

Well, we need to leverage the intuition
or stochastic processes.

We progressively inject the Gaussian
to perturb our train data sets.

So after enough perturbation,

eventually we will obtain very noisy
images which are close to samples
from a simple Gaussian distribution.

So the trajectory of those noisy
data sets form the trajectories of a
stochastic process.
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[Probability Evaluation]

Diffusion and Score-Based Generative Models

Perturbing data with stochastic processes

V'V

Po(x)

Stochastic process

{xt }te[O,T]

.

Probability densities
{Pt(x)}te[o,T]

53

Perturbed distributions

—— Stochastic process

CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

Probability evaluation

pr(x)

A stochastic process is basically a
collection of a infinite number of
random variables.

Here those random variables are
indexed by the continuous parameter t.

For each random variable, there will
be a corresponding probability
density. So one stochastic process
corresponds to an infinite number of
probability densities.

So how do we choose the right
stochastic process such that it
represents an infinite number of noisy
data densities?

Well, we use the term of a stochastic
differential

A stochastic process is basically a
collection of a infinite number of
random variables.

Here those random variables are
indexed by the continuous parameter t.
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[Probability Evaluation]

Probability evaluation * Well, we use the term of a stochastic

differential equation. A stochastic

Perturbing data with stochastic processes differential equation is very similar to

o an ordinary differential equation, but it
Perturbed distributions has one additional stochastic term.

—— Stochastic process

* In the general form of SDEs, we have
one deterministic drift term that
controls the deterministic
properties of the stochastic process.

« We have one stochastic term which
involves dwt, the infinitesimal
Gaussian noise.

A

Po(x) p(x) pr(x)

+ So without loss of a generality, we
consider the following toy formulation

Stochastic process Stochastic differential equation (SDE)

r~==""3 ) of the SDE which does not have the
X =
{xe}efom) dx, ={f (xq, Didt + g(thdwy deterministic drift term. And it has a
rel N very simple stochastic term, sigma t.
g Deterministic drift ~ Infinitesimal noise « We can use sigma t as a continuous
e o P iy o e \ time generalization of noise table
Prol{:)alzlllg densities : WLOG: Toy SDE : sigma i, which we introduce it before.
Pe\X) ste[o,T -
53 [0.7] | dXt = (t) th 1
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Diffusion and Score-Based Generative Models

[Probability Evaluation]
Probability evaluation * Now we have an infinite number of
noisy data sets. How do we generate

Generation via reverse stochastic processes samples, suppose we can estimate

their score functions?

Perturbed distributions

—— Reverse stochastic process

+ Well, the sample generation process
amounts to a time reversal of the
perturbation process.

» By reversing the perturbation process,
we can start from Gaussian noise,
then progressively denoise to
generate noise free samples.

pr(x) p(x)

* How do we obtain this reverse
stochastic process?

54
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Diffusion and Score-Based Generative Models

[Probability Evaluation]

Probability evaluation * Recall that our forward stochastic

process is given by a stochastic

Generation via reverse stochastic processes differential equation.

Perturbed distributions « It turns out that any stochastic
differential equation of that form can
be reversed in analytical form, and this
gives us the reverse stochastic
differential equation.

* The reverse stochastic differential
equation depends on an infinitesimal
noise term, dwt bar.

pr(x) Pt(x) « So this is very similar to dwt, but it
maxes only when time flows
Forward SDE (t: 0->T) . o backwards.
Infinitesimal noise in
b — o‘(t) dw, the reverse time « It also depends on a score function of
direction the noisy data density, pt.
Reverse SDE (t: T=>0) 1:

dx; = —a(t)zivx log pt(xt)idt + a(t)ﬁﬁrﬁ

54 Score function!
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[Probability Evaluation]

Probability evaluation e * So now with the forward and backward
: : : SDEs, we can generalize the previous
Score-based generative modeling via SDEs scope as the generative modeling
approach for using-- yielding noise
levels.

Forward SDE (data — noise)

X0 dx; = o(t)dw, XT

score funci
.«— dx; = —0° (£)[Vx log pe (3 )it + o (t)dw,

Reverse SDE (noise — data)

[Song et al. ICLR 2021 (Outstanding Paper Award)]
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[Probability Evaluation]

Probability evaluation

Score-based generative modeling via SDEs

Forward SDE (data — noise)

@ dx; = o(t)dw, »@
score function S ) l
dxt f’:ﬂ%('ﬁ x log;pt (xt)t + O'(t)dwt @

o Reverse SDE (noise — data)
,I
i
Time conditional ’:' Training objective:
score model / T e e S A ST
e s + o Evovnitormior A (EHErcoll Va log pr(x) = 0(x, )21
L_Seo(x,t) | !
o Positive weighting Score matching loss

V« log p(x) function

[Song et al. ICLR 2021 (Outstanding Paper Award)]

. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

In this formulation, the key is to
estimate the score function, which
we accomplish by modeling the time--
by parameterizing the time-
conditional score model.

We hope to train this time-
conditioned model to approximate a
function of the data density and
time instant, t.

And again, the training procedure
depends on score matching.

We have one score matching loss
for any time instant, t.

We have a positive working function,
lambda t, to balance the
optimization procedure.

And we have a generalized summation
to an expectation over t.
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[Probability Evaluation]

Probability evaluation * After training with this score mentioned

objective, we obtain a good time-

Score-based generative modeling via SDEs conditional score-based model that

approximates the score function of
noisy data densities.

Time-dependent score-based model

S()(X. f) ~ V, 1()(, /’l( ) * And of course training involves

minimizing the score mentioned

x Training: obje_ctive, a_nd we can trgip it
2 efficiently using the denoising
Eicro,1) [ ANE)Ep, () [|| Vx log pe (x) — sa(x,1)][3]] [INAUDIBLE] or [INAUDIBLE]..
. + After training, we can plug our time-
+ Reverse-time SDE conditional score model into the
dx = _0_2 (t)S() (X / )dt 4 o(t)dv_v reverse time SDE.
» Then, we can use any numerical SD
- Euler-Maruyama (analogous to Euler for ODEs) ;‘I’)'Eigosz‘:‘ﬁ;g':n’:r‘;‘:jﬁ time
~ .
X—X— U(t) 2l (X t)At + O'(t) e (Z N(O |At| I)) * And one simple approach is the Euler-
t—t + At Maruyama approgch., which is

stochastic generalization to the
classical Euler solver for ordinary
differential equations.

Song, Sohl-Dickstein, Kingma, Kumar, Ermon, Poole. “Score-Based Generative Modeling
through Stochastic Differential Equations.” ICLR 2021.
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[Probability Evaluation]

Probability evaluation » With this continuous SDE approach,

; we not only improve empirical
Convert|ng the SDE to an ODE performance, we can but also finally
discuss how we can compute the
accurate probability values. And this
requires to convert the stochastic
differential equation to an ordinary

Perturbed distributions

e differential equation.
e

x » So with the right SDE, we can convert
e 4 ; any data distribution to the Gaussian
s ODE trajectories distribution.

—— SDE trajectories

+ It turns out we can do the same thing

Po(x) pPe(x) pr(x) by usipg ordinary differential
equations.

* The trajectory of the ODE and the
SDE look quite different from each
other, but actually they can share
the same set of marginal densities
that's given by the background.

[Song et al. ICLR 2021 (Outstanding Paper Award)]
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[Probability Evaluation]

Converting the SDE to an ODE

Perturbed distributions

—
/’

x » So for any SDE of this form, we show
MY X that the corresponding ordinary
et ODE trajectories differential equation, named

—— SDE trajectories probability flow ODE, has a form on
the right side.
Po(x) pe(x) pr(x)

Ordinary differential equation
« So again, this ODE only relies on the

SDE (probability flow ODE)

dx; = o(t) dw;

[Song et al.

dx LAY e
d_tt = —§U(t)2rvx log py (%}

score function.

* And since we have the time-

----- q'----- conditional score model, we can plug it
. into the ODE, and then we can solve
Score function the ODE in various ways.
~ S¢ (X, t)

ICLR 2021 (Outstanding Paper Award))]
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[Probability Evaluation]

Diffusion and Score-Based Generative Models

Probability evaluation

Evaluating the probabilities with ODEs

Probability distributions

]

<N

ODE trajectories

_____-—-——-—"—'—————_—_
T R——

m(x) s¢(x,1) > ODE

[Song et al. ICLR 2021 (Outstanding Paper Award)]

CVPR2022 Tutorial — Yang Song
https://www.youtube.com/watch?v=wMmqCMwuM2Q

So after substituting this model into
the ODE, we can solve the probability
flow, or the bank crossing time bar,
starting from some samples from the
Gaussian distribution.

This ODE trajectory gradually
converts our Gaussian vectors into
high quality image samples.

And we did not the resulting
distribution of samples from this
ODE solver as p data.

So now, | will show you how to
compute the accurate value of p
data.
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[Probability Evaluation]

Probability evaluation * Recall that we define this probability

distribution in this way. We have prior

Computing the exact likelihood with ODEs Gaussian distribution. We have

time-conditional score model.

* By solving the ODE, we get the

Likelihood: so(x, 1) (x) distribution p data, so this is actually
W(x) > Pe applications.
t: T -0
Applications of likelihood: + So why we need to compute the
: exact likelihood? Because they have
* Unsupervised anomaly detection (pimental et al. 2014, Song et al. 2018) mentioned this briefly before. This
! . i includes lossless compression,

 Generative classification (Ng & Jordan 2002, Zimmermann, Schott, Song, et al. 2021) unsupervised anomaly detection,

g . . generative classification, density
* Density estimation (siiverman, 1986) estimation, and so on.

[Song et al. ICLR 2021 (Outstanding Paper Award)]
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[Probability Evaluation]

Computing the exact likelihood with ODEs

Likelihood: Se(x,1)

7(x) > Po(X)
t1:T—0 » Aformula for this likelihood is given by
Applications of likelihood: the following equation.
5 | : _ * This equation connects log p data--
OSSIesSS COmMPpression (witten et al. 1987, Townsend et al. 2019) any data point x0-- with the log prior
* Unsupervised anomaly detection (pimental et al. 2014, Song et al. 2018) distribution, log pi, and also one-

i I dimensional integral that involves the
 Generative classification (Ng & Jordan 2002, Zimmermann, Schott, Song, et al. 2021) choice of the Jacobian of the score
* Density estimation (siverman, 198s) model.

Probability flow ODE allows exact |I|i?|-lhqod computation: . The trace can be computed using an
2{"“" unbiased estimator.
log Pe (XO) - log W(XT) - Elf ( ) trace(Vx39 (X t)) di « And the integral can be computed
L_O_J Unbiased using an ODE solver. This integral is
ODE Solver Estimator simple to evaluate, because it is a

(Change-of-variable formula for ODEs, Chen et al. 2018) one-dimensional integral.

[Song et al. ICLR 2021 (Outstanding Paper Award)]
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Diffusion and Score-Based Generative Models

[Probability Evaluation]

Probability evaluation * Here are some results of computing

the density with this ODE approach.

SOIVIng ODEs for Sampllng So our results are highlighted with the
green box.
Model NLL Test| FID | « And we report results in negative log
RealNVP (Dinh et al., 2016) 3.49 - likelihoods, which are better when
iResNet (Behrmann et al., 2019) 3.45 - lower.
Glow (Kingma & Dhariwal, 2018) 3.35 -

* In this table, you can see that we can
achieve lower negative log likelihood
on almost all previous approaches,

MintNet (Song et al., 2019b) 3.32 -
Residual Flow (Chen et al., 2019) 3.28 46.37
FFJORD (Grathwohl et al., 2018) 340 -

Flow++ (Ho et al., 2019) 3.29 . even though our methods are not
DDPM (L) (Ho et al., 2020) <3.70" 13.51 explicitly trained for maximum
likelihood.

DDPM (Lgimpee) (Ho et al., 2020)  <3.75°  3.17
DDPM 28 3.37

models trained
with score matching

black-box ODE
Solvers for sampling

[Song et al. ICLR 2021 (Outstanding Paper Award)]
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[Probability Evaluation]

Probability evaluation * | mentioned that the weighting function

on the t can be chosen using some

Efficient maximum likelihood training theoretically principled approach. And
inde.ed. we can do thgt to_specifically
Theorem (informal): Connection between the Kullback-Leibler (KL) maximize maximum likelihood.
divergence and score matching. *+ So there is a theorem we shouldn't--

there is an important connection
between the KL divergence and the
score matching objective, and this

1 tion looks like below.
KL(pdata “ pﬂ) < éEthniform[O,T] [U(t)2Ept,(x)[|lvx logpt(x) . SO(XJ t)”g]] conneciion 1oois Tiee below
Eomommmmemmm 1 » Here the second term, KL divergence
+IKL(pT “ T()E 7 O from p capital T to pi, is approximately
1

------------ 0 if capital T is large enough. This term
does not affect optimization, because
it does not depend on model
parameter theta.

[Song et al. NeurlPS 2021 (spotlight)]
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[Probability Evaluation]

Probability evaluation

Efficient maximum likelihood training

Theorem (informal): Connection between the Kullback-Leibler (KL) + The first term is exactly our score

divergence and score matching. matching objective, but with a different

«Likelihood weiahtina” weighting function.
ikelihood weightin
g 9 » So this weighting function is sigma t

1 ,_.t_.. ) squarcled, vyhich we call the Ii.kelihood
KL(Pass | P0) < 5Ee~taiormio 0 (0) 1,0 [V og (%) = 80(x, 1) 1] o e ol v maman
i I-(-I:G?“ﬂ-;r-): 0 likelihood training.
1 T 1~

oot sentEny ] * By minimizing the score matching loss
function with this particular likelihood
of weighting function, we're actually
implicitly maximizing likelihoods.

Efficient surrogate loss for

maximum likelihood training « Because this score matching loss
function is very efficient to optimize,
this also gives a way for efficient
maximum likelihood training for
[Song et al. NeurlPS 2021 (spotlight)] score-based diffusion models.
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[Probability Evaluation]

Probability evaluation » With this approach, we can further

improve the density values on several

Achieving highest probabilities on test data tested data sets. Again, we report

results in negative log probability,
which is lower-- which is better when

Negative log-probability | (bits/dim) lower.

* Here are some existing results. Those
_ CIFAR-10 ImageNet 32x32 are state-of-the-art likelihood based

generative models that achieve very

PixelSNAIL [Chen et al. 2018] 2.85 3.80 good likelihood of values to image
data, CIFAR-10 and ImageNet.
Delta-VAE [Razavi et al. 2019] 2.83 3.77 + And here is our result, which achieves
very good likelihood 2.83 [INAUDIBLE].
Sparse Transformer [child et al. 2019] 2.80 - This is second to the state-of-the-art.
We also achieved a new state-of-the-
Ours 2.83 3.76 art likelihood of ImageNet 32x32.

* This demonstrates the score-based

Challenges years of dominance of generative models, or diffusion models,
. can not only challenge the dominance
autoregresswe models and VAEs of GANs on image generation quality,

but can also challenge the dominance
of other regression models and AVEs,
[Song et al. NeurlPS 2021 (spotlight)] obtaining high likelihood values.
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[Probability Evaluation]

Probability flow ODE: latent space manipulation

Interpolation

)
—
Py

L
\‘;;.i |I Temperature scaling

[Song et al. ICLR 2021 (Outstanding Paper Award)]

Probability evaluation

. . . . CVPR2022 Tutorial — Yang Song
Diffusion and Score-Based Generative Models https://www.youtube.com/watch?v=wMmqCMwuM2Q

» So aside from probability evaluation,

there also a few nice properties with
the probability flow ODE.

One example is, we can perform
latent space manipulation because
this ODE actually connects score-
based models to normalizing flows,
or latent space generative models.

We can manipulate the latent space
for applications such as image
interpolation, which we show on the
left side, or temperature scaling,
which we show on the right side.
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[Probability Evaluation]

Probability evaluation

Probability flow ODE: uniquely identifiable encoding

Uniquelv identifiable encodina

Model 1\ Model 1
X Z X < > Z

Model 2— Model 2
Score-based models via
Flow models, VAE, etc probability flow ODE

[Song et al. ICLR 2021 (Outstanding Paper Award)]

. . . . CVPR2022 Tutorial — Yang Song
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There is one unique property
associated with the probability flow
ODE. That is it recovers that encode
that is uniquely identifiable.

So what does it mean?

For traditional latent space generative
models, such as AVEs, GANSs, or
normalizing flows, if you train two
models with different architectures, or
if you train them with different
optimizers, then they will map the
same image, the same datapoint x, to
different latent code, z.

But in the case of that probability flow
ODE, things are a bit different. Even if
you have different model architectures
or different optimizers, as long as the
architectures and optimizers are good
enough, they will map the same data
point into the same latent code, z.
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[Probability Evaluation]

Probability evaluation

Probability flow ODE: uniquely identifiable encoding

» Uniquelv identifiable encodina

Model 1\ Model 1
X 7 X < > Z
Model 2—

Model 2
Score-based models via
Flow models, VAE, etc probability flow ODE
* And this is because the probability
flow ODE itself actually does not
* No trainable parameters in the pirobability flow ODE! depend on a model parameter at all.
2 5 * So once we have fixed the forward
dx = — 5 U(t) Vi 108, Pt (X)dt process, this probability flow ODE is

also fixed. And the [INAUDIBLE]
between the data point x and the latent
code z is also fixed.

[Song et al. ICLR 2021 (Outstanding Paper Award)]
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Probability evaluation

Probability flow ODE: uniquely identifiable encoding

* Uniquelv identifiable encodina

Model 1\ Model 1
X 7 X < > Z

Model 2— Model 2
Score-based models via
Flow models, VAE, etc probability flow ODE
o 100 —+— model 1
TE ,/ 1 \ / , —s#— model 2
= 0 / ; " \/ /
9 A \| A v
3 v ¥ (o
-100
0 20 40 60 80 100
Dimension

[Song et al. ICLR 2021 (Outstanding Paper Award)]

CVPR2022 Tutorial — Yang Song
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So here are some experiment results.

We trained two model architectures on
the same CIFAR-10 data set.

And we plot the first 100 dimensions of
the latent code for fixed CIFAR-10
image input.

You can see that the latent code is
almost the same, even though we
were using two different model
architectures trained separately.
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[Probability Evaluation]

* So as a summary, we have talked
about score-based generative models.

Score-based generative modeling: summary It has multiple desirable properties.

» The first, it allows very flexible neural
network models. Because the score

functions can bypass the normalizing
constant, and we can train those
flexible models from data with principle
statistical methods.

* And second, we can generate
samples with a very high quality

that can even surpass GANs in many

. Bypas; the . Higher sample . Accura'ge probability challenging image interaction tasks.
normalizing constant quality than GANs evaluation And moreover, we can control the
* Principled statistical « Controllable * Better estimation of selection process for important
methods generation data probabilities applications in conditional image
generation, and also inverse problem
[Song et al. UAI 2019 oral] [Song & Ermon. NeurlPS 2019 oral] [Song et al. ICLR 2021 oral] solving.
[Song & Ermon. NeurlPS 2020] [Song et al. NeurlPS 2021 spotlight] .

And finally, we can compute the
[(s(;’u':gt::l:ilﬁécg';:? i:vg::;] probability values accurately, even
[Song et al. ICLR 2022] though we only have models of the
score function. And empirically, we
can even obtain better density
estimation performance than existing
likelihood-based generative models.





