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Deep Generative Learning

Learning to generate data

Train

Samples from a Data Distribution Neural Network

Sample




Application (1): Content Generation
StyleGAN3 example images

Karras et al. Alias-Free Generative Adversarial Networks, NeurlPS 2021 3



https://arxiv.org/abs/2106.12423

Application (2): Representation Learning

Learning from limited labels
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Zhang et al., DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort, CVPR 2021
Li et al., Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization, CVPR 2021 4



https://arxiv.org/abs/2104.06490
https://arxiv.org/abs/2104.05833

Application (3): Artistic Tools
NVIDIA GauGAN

NVIDIA GauGAN Segmentation Input NVIDIA GauGAN Output

Park et al., Semantic Image Synthesis with Spatially-Adaptive Normalization, CVPR 2019



https://arxiv.org/abs/1903.07291

The Landscape of Deep Generative Learning
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Denoising Diffusion Models

Emerging as powerful generative models, outperforming GANs

“Diffusion Models Beat GANs on Image Synthesis” “Cascaded Diffusion Models for High Fidelity Image Generation”
Dhariwal & Nichol, OpenAl, 2021 Ho et al., Google, 2021



https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2106.15282
https://arxiv.org/abs/2106.15282

Image Super-resolution

Successful applications

Input : 64x64

Saharia et al., Image Super-Resolution via lterative Refinement, ICCV 2021



https://arxiv.org/abs/2104.07636

Text-to-lImage Generation
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“a teddy bear on a skateboard in times square”
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“Hierarchical Text-Conditional Image Generation with CLIP Latents”

Ramesh et al., 2022

Imagen

A group of teddy bears in suit in a corporate office celebrating
the birthday of their friend. There is a pizza cake on the desk.

“Photorealistic Text-to-lmage Diffusion Models with Deep
Lanquage Understanding”, Saharia et al., 2022
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https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2205.11487

Today’s Program

Introduction Arash 10 min
Part (1): Denoising Diffusion Probabilistic Models Arash 35 min
Part (2): Score-based Generative Modeling with Differential Equations Karsten 45 min
Part (3): Advanced Techniques: Accelerated Sampling, Conditional Generation, and Beyond Ruiqi 45 min
Applications (1): Image Synthesis, Text-to-Image, Controllable Generation Ruiqi 15 min
Applications (2): Image Editing, Image-to-Image, Super-resolution, Segmentation Arash 15 min
Applications (3): Video Synthesis, Medical Imaging, 3D Generation, Discrete State Models Karsten 15 min
Conclusions, Open Problems and Final Remarks Arash 10 min

cvpr2022-tutorial-diffusion-models.github.io
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Disclaimer

You didn’t include
my arXiv submission
that will come out
next week?
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Part (1):
Denoising Diffusion Probabilistic Models

DIFFUSION
MODELS




Denoising Diffusion Models

Learning to generate by denoising

Denoising diffusion models consist of two processes:
Forward diffusion process that gradually adds noise to input

Reverse denoising process that learns to generate data by denoising

Forward diffusion process (fixed)

Data

Reverse denoising process (generative)

Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015
Ho et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020
Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Noise

18


https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2011.13456

Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise
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Diffusion Kernel

Forward diffusion process (fixed

Data Noise

Define a; = 1 — B = q(x¢|xg) = N(x¢; v/ arxq, (1 — ag)1 (Diffusion Kernel
s=1

For sampling: x; = ay Xg + \/ 1 —ay) e where e ~N(0,1

+ values schedule (i.e., the noise schedule) is designed such that a7 — 0 and g(x7|x() & x7;0, 1

20



What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel ¢(x¢|x() but what about q(x¢)?

Diffused Data Distributions

Data Noise
q(x¢) = /Q<X07 Xt) dxg = /Q(Xo) q(x¢|x0) dxg .
N J AN ~ J W_/ N Np— t
Diffused Joint Input Diffusion
data dist. dist. data dist. kernel
The diffusion kernel is Gaussian convolution. q(xo) Q(Xl) Q(Xz) Q(XS) Q(XT)

We can sample x; ~ ¢(X¢) by first sampling X ~ ¢(Xg) and then sampling X; ~ ¢(X¢|X() (i.e., ancestral sampling).

21



Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(x7) ~ N (x7;0,1))
Diffused Data Distributions

Generation:

Sample x7 ~ N (x7p;0,1)

X
lteratively sample x¢_1 ~ q(xX;_1|x¢) t X X
N o y \! X x X
True Denoising Dist.
a(xg) alx) alx)  alxs) q(x7)
e 7 U N
q(%o|x1) q(x]%2) q(Xa|%s) q(xs]%4) q (X7 |%7)

In general, q(x;_1|x¢) o< q(x¢—1)q(x¢|X¢—1) is intractable.

Can we approximate ¢(Xs_1|x¢)? Yes, we can use a Normal distribution if 3¢ is small in each forward diffusion step.
22



Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

Data

p(x7) = N(x7;0,1

2
Po Xt—1|Xt — Xt—1; Hg(X¢, 70-75:[

G J

~

Trainable network
(U-net, Denoising Autoencoder)

= Pp\X0T) =P

Noise
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Learning Denoising Model

Variational upper bound

For training, we can form variational upper bound that is commonly used for training variational autoencoders:

po(Xor) ] _. T

K, x,) [ lo x0)| < Ejx)alxirlxo) | — 1O
atxo) [ 108 Po(30)] = Bopxg)gir] >[ Y m——

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurlPS 2020 show that:

L = E, | Diwlalxrlxo)llp(er)) + 3 Dicwla(e 1150, x0)lpo(e1]5,)), = log po(xo/x1))
Ly t>1 L1 L

where q(x;_1|X¢, X() is the tractable posterior distribution:

Q(Xt—l‘xta Xo) — N(Xt—l; ﬁt(xta X0)7 375]:)7

Qi V91— 0501 —ay_ ~ I —ay_
where [i;(X;, Xg) 1= - iﬂtx(ﬁ— Oil - Oét 1)Xt and [ := Oéi -,
1—Oét 1—0475 1_at


https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2006.11239

Parameterizing the Denoising Model

Since both ¢(x;_1|x¢, X) and pp(X¢_1|X+)are Normal distributions, the KL divergence has a simple form:

1

L1 = Dxr(q(xe—1|xt, X0)|[po(xt-1]%t)) = Eq [T‘QHM(?@?XO) - N@(th)HQ] +C
t

Recall that x; = v/ X + \/(1 — (i) € . Ho et al. NeurlPS 2020 observe that:

- B 1 B By
fule X0) = Zp— (Xt m)

They propose to represent the mean of the denoising model using a noise-prediction network:

With this parameterization

2

Lyt =F i t _ A\ V1—ay € t)|]?
—1 0~q(xq),e~N(0,I) [20_?(1 _Bt)(l —a{t)HE 60(1/05—75 X0 +\/ Oétja )H ] + C

Xt


https://arxiv.org/abs/2006.11239

Training Objective Weighting

Trading likelihood for perceptual quality

2

Lt = Enyeseonton | goy o — il — (v %0+ VI )P

t

&

hd

The time dependent \; ensures that the training objective is weighted properly for the maximum data likelihood training.

However, this weight is often very large for small t’s.

Ho et al. NeurlPS 2020 observe that simply setting Ay = 1 improves sample quality. So, they propose to use:

Lsimple — EXONq(XO),ENN(O,I),tNU(l T) U |6 — 69(\/_ xXo+V1—aq E t)|| }

Xt

For more advanced weighting see Choi et al., Perception Prioritized Training of Diffusion Models, CVPR 2022.

26


https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2204.00227

Summary

Training and Sample Generation

Algorithm 1 Training Algorithm 2 Sampling
;: repeat (x0) 1: x7 ~ N(0,1)
s a0 2: fort="T,...,1d
37 .~ Uniformi({d; «: s 1'}) 3 oer N(O I) 0
4: €~ N(0,I) —
5: Take gradient descent step on 4 Xi-1 = \/at (Xt Tty =0 (xt, t)) + 0tZ
Vo He—eg(\/&txo—l—\/l—&te. 15)||2 5: end for
6: until converged 6: return x,

27



Implementation Considerations

Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent €y (x¢, t)

Time Representation 1' I

Fully-connected
Layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization
layers. (see Dharivwal and Nichol NeurlPS 2021)

28


https://arxiv.org/abs/2105.05233

Diffusion Parameters

Noise Schedule

q(x¢|x¢-1) = N (x¢; \/1 — Bixt-1, 5iI)

Data Noise

po(xs_1|xt) = N(xy_1; pg(xt, ), 07 T)

Above, [ and (7% control the variance of the forward diffusion and reverse denoising processes respectively.

Often a linear schedule is used for J¢, and OL? is set equal to (3.

Kingma et al. NeurlPS 2022 introduce a new parameterization of diffusion models using signal-to-noise ratio (SNR), and
show how to learn the noise schedule by minimizing the variance of the training objective.

We can also train a? while training the diffusion model by minimizing the variational bound (Improved DPM by Nichol and

Dhariwal ICML 2021) or after training the diffusion model (Analytic-DPM by Bao et al. ICLR 2022).

29


https://arxiv.org/abs/2107.00630
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2201.06503

What happens to an image in the forward diffusion process?

Recall that sampling from ¢(x¢|X() is done using X¢ = /0 X0 + \/(1 — &) € wheree ~ N(0,T)

Small t
ar ~ 1

xt = Vo xo+ /(1 — ) € |]'"(f<o)!

/ M VVRAARNYV YNV T INVENVART WV NS TALA AN
1 Fourier Transform
) \ e

Fxt) = Var Fixoq+/(1 1) F(e :
req.
Large t WHN ”M NH H””M M
ay ~ 0 .

In the forward diffusion, the high frequency content is perturbed faster.



Data

Content-Detail Tradeoff

Reverse denoising process (generative)

The denoising model is The denoising model is
specialized for generating the specialized for generating the

high-frequency content (i.e., low-frequency content (i.e.,
low-level details) coarse content)

The weighting of the training objective for different timesteps is important!

Noise

31



Connection to VAEs

Diffusion models can be considered as a special form of hierarchical VAEs.

However, in diffusion models:

The encoder is fixed
The latent variables have the same dimension as the data

The denoising model is shared across different timestep

The model is trained with some reweighting of the variational bound.

Vahdat and Kautz, NVAE: A Deep Hierarchical Variational Autoencoder, NeurlPS 2020
Sgnderby, et al.. Ladder variational autoencoders, NeurlPS 2016. 32



https://arxiv.org/abs/2007.03898
https://arxiv.org/abs/1602.02282

Summary

Denoising Diffusion Probabilistic Models

In this part, we reviewed denoising diffusion probabilistic models.

The model is trained by sampling from the forward diffusion process and training a denoising model to predict the noise.
We discussed how the forward process perturbs the data distribution or data samples.
The devil is in the details:

Network architectures

Objective weighting

Diffusion parameters (i.e., noise schedule)

See “Elucidating the Design Space of Diffusion-Based Generative Models” by Karras et al. for important design decisions.

33


https://arxiv.org/abs/2206.00364

Today’s Program

Introduction Arash 10 min
Part (1): Denoising Diffusion Probabilistic Models Arash 35 min
Part (2): Score-based Generative Modeling with Differential Equations Karsten 45 min
Part (3): Advanced Techniques: Accelerated Sampling, Conditional Generation, and Beyond Ruiqi 45 min
Applications (1): Image Synthesis, Text-to-Image, Controllable Generation Ruiqi 15 min
Applications (2): Image Editing, Image-to-Image, Super-resolution, Segmentation Arash 15 min
Applications (3): Video Synthesis, Medical Imaging, 3D Generation, Discrete State Models Karsten 15 min
Conclusions, Open Problems and Final Remarks Arash 10 min

cvpr2022-tutorial-diffusion-models.github.io
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Part (2):
Score-based Generative Modeling
with Differential Equations
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Forward Diffusion Process

Consider the forward diffusion process again:

Forward diffusion process (fixed)

Data

36



Forward Diffusion Process

Consider the limit of many small steps:

Forward diffusion process (fixed)

Data

i A q(x¢|xp—1) = N(xe5 /1 — Be x¢—1, Be] N

=) Xt =/1—Bexi—1+ /B N(O,1

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR, 2021 37



https://arxiv.org/abs/2011.13456

Forward Diffusion Process

Consider the limit of many small steps:

Forward diffusion process (fixed)

Data

t Xt—1, 5151

1 — Birxi—1 + /B N(0, 1
- = /1 — B(t)Atx_1 + /B(t)AtN(0,T ;= B(t)At

2%
|

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR, 2021 38



https://arxiv.org/abs/2011.13456

Forward Diffusion Process

Consider the limit of many small steps:

Forward diffusion process (fixed)

Data Noise
i i q(x¢|x¢—1) = N(xe5 /1 = Bexe—1, 5] I
x¢ = /1 — Bexe—1+ /B N(0,1
= /1 — B(t)Atxs—1 + /BE)AtN(0,T By = B(t)At
)AL .
=) Xyl — > Xi_1 + \/5 )ALt N(0,1 (Taylor expansion)

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR, 2021 39



https://arxiv.org/abs/2011.13456

Forward Diffusion Process as Stochastic Differential Equation

Consider the limit of many small steps:

Forward diffusion process (fixed)

Data Noise

1
dXt:—§5tXtdt—|—\/ t dwt

Stochastic Differential Equation (SDE)
describing the diffusion in infinitesimal limit

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR, 2021 40



https://arxiv.org/abs/2011.13456

Crash Course in Differential Equations

f(x,t) or dx = f(x,t)dt

Ordinary Differential Equation (ODE)




Crash Course in

Ordinary Differential Equation (ODE):

d
d_}t( = f(x,t) or dx =f(x,t)dt

Analytical
Solution:

[terative

Numerical X(t + At) ~ x(t) + f(x(t),t)At

Solution:

Differential Equations

Stochastic Differential Equation (SDE):

d
= f(x,t) + o(x,t)w;

drift coefficient diffusion coefficient

( dx = f(x,t)dt + o(x, t)dw; ) W, o

h

3

2

1

Wiener Process
(Gaussian
White Noise)




Crash Course in Differential Equations

Ordinary Differential Equation (ODE):

d
d_}t( = f(x,t) or dx =f(x,t)dt

Analytical
Solution:

x(t) = x(0) +

Iterative
Numerical x(t + At) ~ x(t) + f(x(t),t)At

Solution:

Stochastic Differential Equation (SDE):

d
= f(x,t) + o(x,t)w;

drift coefficient diffusion coefficient

( dx = f(x,t)dt + o(x, t)dw; ) W, o

h

3

2

1

Wiener Process
(Gaussian
White Noise)




Forward Diffusion Process as Stochastic Differential Equation

Consider the limit of many small steps:

Forward diffusion process (fixed)

Data Noise

1
dXt:—§5tXtdt—|—\/ t dwt

Stochastic Differential Equation (SDE)
describing the diffusion in infinitesimal limit

Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR, 2021 44



https://arxiv.org/abs/2011.13456

Forward Diffusion Process as Stochastic Differential Equation

Forward diffusion process (fixed)

1
Forward Diffusion SDE: dx; = —55 t)x; dt + +/ B(t) dwy

drift term diffusion term
Song et al., ICLR, 2021 (pulls towards mode) (injects noise) 45



https://arxiv.org/abs/2011.13456

Forward Diffusion Process as Stochastic Differential Equation

Forward diffusion process (fixed)

Song et al., ICLR, 2021 46



https://arxiv.org/abs/2011.13456

Forward Diffusion Process as Stochastic Differential Equation

Forward diffusion process (fixed)

1
Forward Diffusion SDE: dx; = —56(t)xt dt + +/B(t) dw;
[ | ' J [ | ' J
drift term diffusion term

(pulls towards mode) (injects noise)

Special case of more general SDEs used in generative diffusion models:

dx; = f(t)x¢dt + g(t) dw;

Song et al., ICLR, 2021 47



https://arxiv.org/abs/2011.13456

The Generative Reverse Stochastic Differential Equation

Forward diffusion process (fixed)

1
Forward Diffusion SDE: dx; = —§B(t)xt dt + +/B(t) dw;

Song et al., ICLR, 2021

But what about the reverse
direction, necessary for generation?

48


https://arxiv.org/abs/2011.13456

The Generative Reverse Stochastic Differential Equation

Forward diffusion process (fixed)

Forward Diffusion SDE:

drift term diffusion term
A A
Reverse Generative _ _1 B [T —
Diffusion SDE: dXt — zﬁ(t)Xt ﬁ(t)vxt log dt (Xt) dt -+ B(t) dwt

)
“Score Function”

=) Simulate reverse diffusion process: Data generation from random noise!
Song et al., ICLR, 2021

Anderson, in Stochastic Processes and their Applications, 1982

49


https://arxiv.org/abs/2011.13456
https://www.sciencedirect.com/science/article/pii/0304414982900515

Differential Equation

The Generative Reverse Stochastic

Reverse generative process

SRS IR
o Tarh i F M
ey sy
f e DA

2 S
4

At T b
o SIS
PO L i AR
,\«Q-V/vwc.\w! o > ..YN.M A

Song et al., ICLR, 2021

50
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https://arxiv.org/abs/2011.13456
https://www.sciencedirect.com/science/article/pii/0304414982900515

The Generative Reverse Stochastic Differential Equation

Forward diffusion process (fixed)

Forward Diffusion SDE:

drift term diffusion term
A A
Reverse Generative _ _1 B [T —
Diffusion SDE: dXt — zﬁ(t)Xt ﬁ(t)vxt log dt (Xt) dt -+ B(t) dwt

)
“Score Function”

=) Simulate reverse diffusion process: Data generation from random noise!
Song et al., ICLR, 2021

Anderson, in Stochastic Processes and their Applications, 1982

51


https://arxiv.org/abs/2011.13456
https://www.sciencedirect.com/science/article/pii/0304414982900515

The Generative Reverse Stochastic Differential Equation

But how to get the score function V., log ¢:(x:)?


https://arxiv.org/abs/2011.13456
https://www.sciencedirect.com/science/article/pii/0304414982900515

Score Matching

Forward diffusion process (fixed)

Mﬁv A

N—
Q

<

—~7

X0 X¢

Naive idea, learn model for the score function by direct regression?

min EtNZ/I(O,T) Extr\./qt (x¢) | ’SG (Xta t) o vxt lOg di (Xt) | ’%

7}
. . . : , . :
diffusion diffused neural score of
time ¢ data x; network diffused data
(marginal)

=> But V,, log ¢;(x;) (score of the marginal diffused density q:(x;)) is not tractable!

Vincent, “A Connection Between Score Matching and Denoising Autoencoders”, Neural Computation, 2011
Song and Ermon, “Generative Modeling by Estimating Gradients of the Data Distribution”, NeurlPS, 2019



https://ieeexplore.ieee.org/document/6795935
https://arxiv.org/abs/1907.05600
https://ieeexplore.ieee.org/document/6795935
https://arxiv.org/abs/1907.05600

Denoising Score Matching

Forward diffusion process (fixed)

“Variance Preserving” SDE:

dXt = —%5(t)xt dt + AV B(t) dwt

Qt(Xt\Xo) — N(Xt; YtXo0, (77521)

Instead, diffuse individual data points Xg. Diffused ¢;(x:|x¢) 7s tractable!

Denoising Score Matching:

min By 1/(0,7) Exg o (x0) Exs man (0 x0) | 186 (X2, 1) — Vix, 10g q¢ (x¢[%0) |5

6
diffusion data diffused data neural score of diffused
time ¢ sample xg sample x; network data sample
Vincent, in Neural Computation, 2011 =) After expectations, sg(x;,t) =~ Vy, log ¢: (x¢)!

Song and Ermon, NeurlPS, 2019
Song et al. ICLR, 2021 26



https://ieeexplore.ieee.org/document/6795935
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2011.13456

Denoising Score Matching

Implementation 1: Noise Prediction

Forward diffusion process (fixed)

“Variance Preserving” SDE:
1
dXt = —55(t)xt dt -+ AV B(t) dwt
q¢(X¢|x0) = N(Xt; Yt X0, (77521)

Denoising Score Matching:

min By 240, 7) B o (x0) By v (e x0) 156 (Xt £) = Vix, T0g g1 (x4 [%0) I3

Re-parametrized sampling: x; = X0+ 0 € ~N(0,I)

2
: (Xt — Y4 Xo0 Xt —
Score function: Vi, logq:(x¢|x9) = —Vx, 5 ) S 5 — .
207} o o o
€o (Xt7 t)
Neural network model: sg(x¢,t) := —
Ot
Vincent, in Neural Computation, 2011 m) inlE F E 1 H ( t)H2
Song and Ermon, NeurlPS, 2019 0 t~U(0,T) %0 ~qo (x0) =e~N(0,1) Ot2 7 2

Song et al. ICLR, 2021 37



https://ieeexplore.ieee.org/document/6795935
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2011.13456

Denoising Score Matching

Implementation 2: Loss Weightings

Forward diffusion process (fixed)

“Variance Preserving” SDE:

dXt = —%5(t)xt dt + AV B(t) dwt

Qt(Xt\Xo) — N(Xt; YtXo0, (77521)

Denoising Score Matching objective with loss weighting A():

. A(t)
min By gy(0,7) Bseg oo (o) Ben(0.1) —5- 1€ = €0.(x1, )15
t

Different loss weightings trade off between model with
good perceptual quality vs. high log-likelihood

. . L 9
Ho et al, NeurlPS, 2020 Perceptual quality: A\(t) = o}

Song et al., NeurlPS, 2021 . T . L .
Kinama ot al.. NeurlPS. 2021 Maximum log-likelihood: \(t) = ((t) (negative ELBO)
Vahdat et al., NeurlPS, 2021

Huang et al., NeuriPs, 2021 =) Same objectives as derived with variational approach in Part (1)! .
Karras et al., arXiv, 2022



https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2101.09258
https://arxiv.org/abs/2107.00630
https://arxiv.org/abs/2106.05931
https://arxiv.org/abs/2106.02808
https://arxiv.org/abs/2206.00364

Denoising Score Matching

Implementation 2: Loss Weightings

More sophisticated model
parametrizations and loss

weightings possible!

Karras et al., “Elucidating the Design Space of Diffusion-Based Generative Models”, arXiv, 2022
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Denoising Score Matching

Implementation 3: Variance Reduction and Numerical Stability

. (1 , VP SDE
mem EtNU(O,T)EXONQO(Xo)EGNN(O,I) 0—152 ‘ |€ — €6 (Xt’ t)HQ 20.0 — Ww/0 importance sampling
= - W/ importance sampling
Notice 0,52 — 0, as t — 0. Loss heavily amplified when © |
sampling ¢ close to O (for A(t) = (t)). High variance! ul el
= 6.0
0
S 4.0
1. Train with small time cut-off n (= 107°):
| ()
min Eth(n,T)Exowqo (xo)]Eew./\/'(O,I) —2||€ — €9 (Xt, t)||% 0 200 o 4QO | 600 800
6 0y Training iteration (k)

(image from: Song et al., “Maximum Likelihood Training of
Score-Based Diffusion Models®, NeurlPS, 2021)

2. Variance reduction by Importance Sampling:

: . A(t)
Importance sampling distribution: r(t) o —3
t

1 A(t)

mkE, .y Ee K. _ £)]]2
Song et al., NeurlPS, 2021 meln t~r(t)=x0~qo(x0) e N(O’Dr(t) JtQ ||E GO(Xta )||2

Vahdat et al., NeurlPS, 2021
Huang et al., NeurlPS, 2021 60
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Probability Flow ODE

Forward diffusion process (fixed)
‘ MH A
o "Wm

AL
) /f‘vw/\\/"
AA

Wy cb(% y
W

4

Reverse Generative Process q(XT)

1
Consider reverse generative diffusion SDE: dx; = —55(75) x; + 2V, log q:(x¢)] dt + /B (t) dwy

1
In distribution equivalent to ”Probability Flow ODE”:  dx; = —iﬁ(t) x; + Vi, log q:(x4)] dt

(solving this ODE results in the same ¢:(X:)when
initializing g7 (x7) ~ N (x71;0,1))

61

Song et al., ICLR, 2021
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Probability Flow ODE

Encoding with Probability Flow ODE

—
X0 Generation with Probability Flow ODE XT

Xy = — 5 B(t) [x¢ + 86 (X,

Song et al., ICLR, 2021 62
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Synthesis with SDE vs. ODE

Generative Reverse Diffusion SDE (stochastic): Generative Probability Flow ODE (deterministic):

1 1
dXt:—§5t Xt—l—QSQ Xt,t dt—l—\/ t d(:)t dXt:—§5t X+ + Sg Xt,t dt

Song et al., ICLR, 2021 63
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Probability Flow ODE

Diffusion Models as Continuous Normalizing Flows

Encoding with Probability Flow ODE

q(xo) ~ Generation with Probability Flow ODE q(x7)

Probability Flow ODE as Neural ODE or
Continuous Normalizing Flow (CNF): =) Enables use of advanced ODE solvers

1 =) Deterministic encoding and generation
dx; = _55@) xe + sp(x, 1)) dt (semantic image interpolation, etc.)

( % _ _%B(t) ¢ + s6(x¢, t)] )

Chen et al., NeurlPS, 2018
Grathwohl, ICLR, 2019
Song et al., ICLR, 2021
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Semantic Image Interpolation with Probability Flow ODE

| Continuous changes in latent space (X7)
1 — result in continuous, semantically
meaningful changes in data space (Xg)!

Generation with Probability Flow ODE

Dockhorn et al., ICLR, 2022 65
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Probability Flow ODE

Diffusion Models as Continuous Normalizing Flows

Encoding with Probability Flow ODE

Probability Flow ODE as Neural ODE or

Continuous Normalizing Flow (CNF): =) Enables use of advanced ODE solvers
1 =) Deterministic encoding and generation
dx; = _55(75) xe + sp(x, 1)) dt (semantic image interpolation, etc.)
d 1 _ ° ° ° . . R
( % _ _55@) %, + so(xy, 1)] ) =)> Log-likelihood computation (mst;;mtanei)us chagge of variables):
log pe(x0) = log pr(xr) — / Ir (55(75)87 Xt + Se(Xt,t)]> dt
0 t

Chen et al., NeurlPS, 2018 Diffusion models can be considered
Grathwohl, ICLR, 2019 =)

. . -
Song et al.. ICLR. 2021 CNFs trained with score matching!
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Sampling from “Continuous-Time” Diffusion Models

How to solve the generative SDE or ODE in practice?

XT)

<
Q(XO) Generation with Reverse Diffusion SDE q( Q(XO) Generation with Probability Flow ODE q(XT)

X0 ” .o X¢ . XT

Generative Diffusion SDE: Probability Flow ODE:
1 1
dXt = —55(t) [Xt -+ 289 Xt, dt + \/ dwt dXt = —§ﬁ(t) [Xt -+ Se(Xt,t)] dt
=) Euler-Maruyama: =) Euler’s Method:
1 1
X¢—1 = X¢ + 55@) Xt + 286(x¢,t)] At + /B(t) At N(0, 1) Xp—1 = X¢ + 55(75) ¢ + so(x¢, )] At
Ancestral Sampling (Part 1) is In practice: Higher-Order ODE solvers
- also a generative SDE sampler! =) (Runge-Kutta, linear multistep methods,

exponential integrators, ...) o

Song et al., ICLR, 2021
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Sampling from “Continuous-Time” Diffusion Models

How to solve the generative SDE or ODE in practice?

 Runge-Kutta adaptive step-size ODE solver [1]

* Higher-Order adaptive step-size SDE solver [2]

» Reparametrized, smoother ODE [3]

» Higher-Order ODE solver with linear multistepping [4]
« Exponential ODE Integrators [5,0]

* Higher-Order ODE solver with Heun’s Method [7]

[1] Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations”, /ICLR, 2021

[2] Jolicoeur-Martineau et al., “Gotta Go Fast When Generating Data with Score-Based Models”, arXiv, 2021

[3] Song et al., “Denoising Diffusion Implicit Models”, ICLR, 2021

[4] Liu et al., "Pseudo Numerical Methods for Diffusion Models on Manifolds”, /ICLR, 2022

[5] Zhang and Chen, “‘Fast Sampling of Diffusion Models with Exponential Integrator”, arXiv, 2022

[6] Lu et al., “DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps’, arXiv, 2022
[7] Karras et al., “Elucidating the Design Space of Diffusion-Based Generative Models”, arXiv, 2022
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Sampling from “Continuous-Time” Diffusion Models
SDE vs. ODE Sampling: Pro’s and Con’s

Xo v Xt T

Generative Diffusion SDE: Probability Flow ODE:
1 1
dx; = —55(75) x¢ + 289(x¢, )] dt + +/5() doy dx; = —55(75) x¢ + sg(xy, ¢)] di

A = — 5 B(8) [xs + so(xe, D] dt — 2 B(t)so(xe. 1)t + v/B(T) de

Probability Flow ODE Langevin Diffusion SDE
Pro: Continuous noise injection can help to = [r0:Can leverage fast ODE solvers. Best
=) compensate errors during diffusion process (Langevin when targeting very fast sampling.
sampling actively pushes towards correct distribution).
Con: Often slower, because the stochastic terms themselves L4 Con: No “stochastic™ error corregtlon, oft'en slightly
require fine discretization during solve. lower performance than stochastic sampling.

70
Karras et al., “Elucidating the Design Space of Diffusion-Based Generative Models”, arXiv, 2022
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Assume an Energy-based Model (EBM): po(X,t) =

lefusmn Models as Energy-based Models

Forward diffusion process (fixed)

e —Fk () (X ) t)

Zo(1)

Sample EBM via Langevin dynamics: Xi11 = X; — NVxFg(x;,t) + 1/2n N(0,1)

Requires only gradient of energy —V,Ep(x,t), not Eg(x,t) itself, nor Z¢(t)!

In diffusion models, we learn “energy gradients” for all diffused distributions directly:

vx lOg qt (X)

=)

~ sg(x,t) =: Vxlogpe(x,t) = —VxEg(x,1) — Vxlog Zg(t) = —VxEg(x,1)
=0
Diffusion Models model energy gradient directly, along entire diffusion process, and avoid modeling

partition function. Different noise levels along diffusion are analogous to annealed sampling in EBMs.
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Unique ldentifiability

Forward diffusion process (fixed)

Forward Diffusion SDE:

Reverse Generative 1 _
Diffusion SDE: dx¢ = —5 B(t) [x¢ + 2Vx, log ¢(x¢)] dt + v/ 5(t) do,

~ Sg(X¢,t)

Denoising model sg(X;,t) and deterministic data encodings uniquely determined by data and fixed forward diffusion!

Even with different architectures and initializations, we recover identical model outputs and encodings (given
sufficient training data, model capacity and optimization accuracy), in contrast to GANs, VAEs, etc.

Song et al., ICLR, 2021 72
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Unique ldentifiability

v 100 - Model A
= \ | —a— Model B
m ", ! ¢ »
> ’ D I
)
g O / { Yy [¥
B | |
- Ad
-100
0 20 40 60 80 100
Dimension

Figure 7: Comparing the first 100 dimensions of the latent code obtained for a random CIFAR-10
image. “Model A” and “Model B” are separately trained with different architectures.

(image from: Song et al., “Score-Based Generative Modeling through Stochastic Differential Equations”, ICLR, 2021)

Song et al., ICLR, 2021 73
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Why use Differential Equation Framework?

Forward diffusion process (fixed)

St A e
< g Mw‘w"mj
ALAG ‘

Q(Xo)

Reverse Generative Process

X0 | Xt . XT

Advantages of the Differential Equation framework for Diffusion Models:

Can leverage broad existing literature on advanced and fast SDE and ODE solvers
Allows us to construct deterministic Probability Flow ODE

Deterministic Data Encodings

Log-likelihood Estimation

Clean mathematical framework based on Diffusion Processes and Score Matching;
connections to Neural ODEs, Continuous Normalizing Flows and Energy-based Models
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Today’s Program

Introduction Arash 10 min
Part (1): Denoising Diffusion Probabilistic Models Arash 35 min
Part (2): Score-based Generative Modeling with Differential Equations Karsten 45 min
Part (3): Advanced Techniques: Accelerated Sampling, Conditional Generation, and Beyond Ruiqi 45 min
Applications (1): Image Synthesis, Text-to-Image, Controllable Generation Ruiqi 15 min
Applications (2): Image Editing, Image-to-Image, Super-resolution, Segmentation Arash 15 min
Applications (3): Video Synthesis, Medical Imaging, 3D Generation, Discrete State Models Karsten 15 min
Conclusions, Open Problems and Final Remarks Arash 10 min

cvpr2022-tutorial-diffusion-models.github.io
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Part (3):
Advanced Techniques: Accelerated Sampling,
Conditional Generation, and Beyond




Outline

Questions to address with advanced techniques

Q1: How to accelerate the sampling process?
Advanced forward diffusion process
Advanced reverse process
Hybrid models & model distillation
Q2: How to do high-resolution (conditional) generation?
Conditional diffusion models
Classifier(-free) guidance

Cascaded generation



Part (3)-1:
Q: How to accelerate sampling process?




What makes a good generative model?

The generative learning trilemma

Likelihood-based models
(Variational Autoencoders
& Normalizing flows

”-': —————— ——;l--\

Fast \
sampling Coverage/ :
Diversity A
4
Generative Denoising
Adversarial Diffusion
Networks (GANSs) Models

Often requires 1000s of
network evaluations!
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What makes a good generative model?

The generative learning trilemma

Tackle the trilemma by accelerating diffusion models

Mode
Coverage/
Diversity

Fast
Sampling
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ow to accelerate diffusion models?

[Image credit: Ben Poole, Mohammad Norouzi]
Simple forward process slowly maps data to noise

Reverse process maps noise back to data where
diffusion model is trained

Naive acceleration methods, such as reducing diffusion time steps in | e

training or sampling every k time step in inference, lead to immediate . '
S

waorse performance.

We need something cleverer.

Given a limited number of functional calls, usually much less than
1000s, how to improve performance?

81



1/3) Advanced forward process

The reverse process will be changed accordingly

Simple forward process slowly maps data to noise

X072 .. 72Xt 7 Xty1 7 ... 7 X7

q(x¢|x1—1) = N (x5 /1 — Bexi—1, Bl

Does the noise schedule have to be predefined?
Does it have to be a Markovian process?

Is there any faster mixing diffusion process?
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Variational diffusion models

Learnable diffusion process

Given the forward process q(x¢|xg) = N (x¢; v/ agxg, (1 — az)I))
Directly parametrize the variance through a learned function 7»:

1 — ay = sigmoid(y,(t))

v (t): @ monotonic MLP.
Strictly positive weights & monotonic activations (e.g. sigmoid)

Analogous to hierarchical VAE (part 1): unlike diffusion models using a fixed encoder,
we include learnable parameters in the encoder.

Kingma et al., “Variational diffusion models”, NeurlPS 2021.
Vahdat and Kautz, NVAE: A Deep Hierarchical Variational Autoencoder, NeurlPS 2020
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Variational diffusion models

New parametrization of training objectives

Optimizing variational upper bound of diffusion models can be simplified to the following training objective:

L1 = b “X0,6, [(exp( ﬂ)(t) — '7""?)(t — 1)) — 1)||e — eq(x, t)”%]

- Learning noise schedule improves likelihood estimation of diffusion models, given fewer diffusion steps.

Letting 7" — oc leads to variational upper bound in continuous-time

Loo = 5Exper [0l = ol IE] . 74(0) = dyy (1)

- it is shown to be only related to the signal-to-noise ratio SNR(¢) = a;/(1 — &;) = exp(—~,(t)) at endpoints, invariant to the
noise schedule in-between.

- The continuous-time noise schedule can be learned to minimize the variance of the training objective for faster
training.

Kingma et al., “Variational diffusion models”, NeurlPS 2021.
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Variational diffusion models
SOTA likelihood estimation

Key factor: appending Fourier features to the input of U-Net
[l = sin(x; jx2"m), g;'; . = cos(w;jx2"m),n =T7,8.

Good likelihoods require modeling all bits, even the ones
corresponding to very small changes in input.

But: neural nets are usually bad at modeling small changes to
inputs.

Significant improvements in log-likelihoods.

Kingma et al., “Variational diffusion models”, NeurlPS 2021.
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Denoising diffusion implicit models (DDIM)

Non-Markovian diffusion process

Main Idea
Design a family of non-Markovian diffusion processes and corresponding reverse processes.

The process is designed such that the model can be optimized by the same surrogate objective as
the original diffusion model.

Lsimple(e) = ]Et,xo,é |:H€ o 69(\/C_Ttx0 TV 1- Q€, t) H2:|
Therefore, can take a pretrained diffusion model but with more choices of sampling procedure.

Song et al., “Denoising Diffusion Implicit Models”, ICLR 2021.
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Denoising diffusion implicit models (DDIM)

How to define the non-Markovian forward process?

Recall that the KL divergence in the variational upper bound can be written as: V1= 05 V91—
! po(xs,t) = 11 5 (Xt—\/lﬂti
~ — — X
Li—1 = Dxu(q(xe-1/xt, %o)||po(xt-1]%1)) = Eq Tﬂ”/’%(xt)XO) — o (Xt t)HQ +C t t
t
— ]Exowq(xo),fw;’\-"'(ﬂ,l) [)‘fIIG — 69(\/6_’1‘ Xp 1+ v 1 — &1‘ €, t)Hz] -+ C
G ~ J
Xt
If we assume loss weighting A¢ can be arbitrary values, the above formulation holds as long as
q(xtlx0) = N(xt; Varxg, (1 —a)l))  (make sure x; = var xg+ /(1 — 1) €)
~ ~ ~ Xt — 1/ QX
Forward process: q(xi—1[x1,%0) = N (x;-1; fus(x1,%0), 671), (X1, X0) = ax; + be = ax; +b Ny
= v/ako

‘ X
Reverse process: Po(Xi—1[x:) = N (xi—1; po(xt,1), 571),  mo(xe.t) = axe + beg(x¢,t) = axq + b A—a

No need to specify q(x;/x;—1) to be a Markovian process!

Song et al., “Denoising Diffusion Implicit Models”, ICLR 2021.

(assume x; = v/a; X + V(1 —ay) €g(X¢, 1))
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Denoising diffusion implicit models (DDIM)

Non-Markovian diffusion process

t—\/d_"txo

- X
For the forward process q(x:—1|x¢, x0) = N (x¢—1; fie(xt,%0), 0¢1),  fe(Xe, X0) = ax¢ + be = axy + b

a, b such that q(Xt‘Xo) = N(Xt; @Xo, (1 — C_vt)I))

Define a family of forward processes that meets the above requirement:

_ _ o Xt — VX .9
q(xi—1|x¢,%0) = N | Vay_1x +\/1—a_ — 52 o |
7(x¢—1]%¢, %0) ( t—1X0 t—1 t T—5, ,,)

The corresponding reverse process is

—_— _ o, Xt — Xy o
Xi—1|x:) = N | Vay_1X —|—\/1—Q_ — 52 . ord |

Song et al., “Denoising Diffusion Implicit Models”, ICLR 2021.

V91— ay

, heed to choose
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DDIM sampler

Deterministic generative process

Xt — X
X 1]x:) = Va x+\/1—a — o7 - ,
P(t1| f) ( t—1X0 t—1 m ;

DDIM sampler - Ot = 0,Vt

- a deterministic generative process, with randomness from only t=T.

Song et al., “Denoising Diffusion Implicit Models”, ICLR 2021.
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ODE interpretation

Deterministic generative process

_2 T T T _40 T T T _40 T T T T 1
t=0.0 0.2 0.4 0.6 0.8 t=0 200 400 600 t=0 S 10 15 20 25

(a) Variance preserving ODE [42] (b) Variance exploding ODE [42] (c) DDIM [40] / Our ODE

DDIM sampler can be considered as an integration rule of the following ODE:

di(t)Zeﬁf)( ) )dn(t); X =x/Va,n=v1—-a/Va

n? + 1

With the optimal model, the ODE is equivalent to a probability flow ODE of a “variance-exploding” SDE:

1 dn?(t
dx = —§g(t)2Vi log p(%)dt, g(t) = ndt( )

Sampling procedure can be different from standard Euler’s method: wrt. dn(t) vs wrt.d¢

Song et al., “Denoising Diffusion Implicit Models”, ICLR 2021.
Karras et al., “Elucidating the Design Space of Diffusion-Based Generative Models”, arXiv 2022.
Salimans & Ho, “Progressive distillation for fast sampling of diffusion models”, ICLR 2022.
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T €r
2 40
| 20 -
: ¥
—1 - _ - a —20 1
—2 T T T —40
t=0.0 0.2 0.4 0.6 0.8 t=0

(a) Variance preserving ODE [42]

DDIM sampler

Faster & low curvature

200

400

600

(b) Variance exploding ODE [42]

_20 =

—40
t=0

5

10

I 1

15 20 25

(c) DDIM [40] / Our ODE

(Karras et al.) argues that the ODE of DDIM is favored, as the tangent of the solution trajectory always points

towards the denoiser output.

Leads to largely linear solution trajectories with low curvature.

Low curvature means less truncation errors accumulated over the trajectories.

Song et al., “Denoising Diffusion Implicit Models”, ICLR 2021.

Karras et al., “Elucidating the Design Space of Diffusion-Based Generative Models”, arXiv 2022.

Salimans & Ho, “Progressive distillation for fast sampling of diffusion models”, ICLR 2022.
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Critically-damped Langevin diffusion

“fast mixing” diffusion process

p(x0) Fixed Forward Diffusion Process

\< e N VP S

p(X1)

“w'uh‘ V ’QM

< ool /

K

—
Generation with Parametrized Reverse Denoising Process

- Regular forward Diffusion Process: dx; = — %5(t)xtdt + v/ B(t)dw,

* |t is a special case of (overdamped)

1
Langevin dynamics: dx = 56(t)vxt log pEq (Xt)dt + v/ 5(t)dwt
pEQ(Xt) = N(Xt; 0. I) ~ e

Dockhorn et al., “Score-Based Generative Modeling with Critically-Damped Langevin Diffusion”, ICLR 2022.

2

1,2

t
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“Momentum-based” diffusion

Introduce a velocity variable and run diffusion in extended space

Denoising by Modeling
Vv, logp(vi|x¢)

Diffusion
Smooth Denoising (x 1)

Diffusion of Joint
Distribution p(x¢, v¢) Smooth Diffusion
Forward t=0.00
Diffusion Process '

Image X Velocity vy

Main idea: Inject noise only into V¢, faster mixing
through Hamiltonian component!

Dockhorn et al., “Score-Based Generative Modeling with Critically-Damped Langevin Diffusion”, ICLR 2022.
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Advanced reverse process

Approximate reverse process with more complicated distributions

maps noise back to data where
diffusion model is trained

Q: is normal approximation of the reverse process still accurate when
there’re less diffusion time steps?
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Advanced approximation of reverse process

Normal assumption in denoising distribution holds only for small step

Denoising Process with Uni-modal Normal Distribution

Noise

Requires more complicated functional approximators!

Xiao et al., “Tackling the Generative Learning Trilemma with Denoising Diffusion GANs”, ICLR 2022.
Gao et al., “Learning energy-based models by diffusion recovery likelihood”, ICLR 2021.
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Ty

Denoising diffusion GANs

Approximating reverse process by conditional GANs

mgn Z Eq(x,) [Dadv(q(xt—1|%t)||po (xt—1]%¢))]

t>1

Forward diffusion

oz, 1| )

Real / Fake? D(:ct- 1y Ly t) )

Buiuonipuo)

Xiao et al., “Tackling the Generative Learning Trilemma with Denoising Diffusion GANs”, ICLR 2022.

)

8

N

=
4

Compared to a one-shot GAN generator:

Both generator and discriminator are
solving a much simpler problem.

Stronger mode coverage

Better training stability
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Diffusion energy-based models

Approximating reverse process by conditional energy-based models

An energy-based model (EBM) is in the form

1 1

po(x) = Z_e 7

Partition function
Analytically intractble

Parametrization

exp(fo(x)) = = exp(—Ep(z))

Energy function

Energy landscape

o dand

N

Observations

Learning energy-based models

Optimizing energy-based models requires MCMC from the current model pg(x)

VQ logpg(x) — ng(X) — Epg(;l?’)[vgf(x,)]

Gao et al., “Learning energy-based models by diffusion recovery likelihood”, ICLR 2021.
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Diffusion energy-based models

Conditional energy-based models

1 ~
Assume at each diffusion step marginally po(x) = - exp(fo(x)) . Let X = X + o€ (data at a higher noise level).
0
The conditional energy-based models can be derived by Bayes’ rule: Compared to a single EBM:
- 1 i Sampling is more friendly and
po(X[X) = Zo(%) €Xp (fa(x) — 531X = XH2) 2asier £o converge
’ Training is more efficient
Well-formed energy potential
Compared to diffusion models:
% Much less diffusion steps (6 steps)
1 .
— fo(x) —(fo(x) = 5z 1% —x[*)

1 n
Learn the sequence of EBMs by maximizing conditional log-likelihoods: J(6) = - E log pg (x;|X;)
1=1

Get samples by progressive sampling from EBMs from high-noise levels to low-noise levels.

Gao et al., “Learning energy-based models by diffusion recovery likelihood”, ICLR 2021.
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Advanced modeling

Latent space modeling & model distillation

an we do model distillation for fast sampling?

an we lift the diffusion model to a latent space that is faster to diffuse?
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Progressive distillation

 Distill a deterministic DDIM sampler to the same model architecture.

« At each stage, a “student” model is learned to distill two adjacent sampling steps of the “teacher” model to

one sampling step.

« At next stage, the “student” model from previous stage will serve as the new “teacher” model.

t=1 €

Zy/2 — f(z3/4;77)<

Zy/4 = f(Zl/z;U)<

Z3/4 = f(z1;m)3
. Distillatio>

Distiuatio>

X= J”(Z1/4;77)<

t =0 X

= ¢

€

) 4

h 4
X

Distillatio>

€

\

>X

f(z1;0)

Distillation stage

Salimans & Ho, “Progressive distillation for fast sampling of diffusion models”, ICLR 2022.
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Algorithm 1 Standard diffusion training Algorithm 2 Progressive distillation

Require: Model xy(z;) to be trained Require: Trained teacher model %, (z;)
Require: Data set D Require: Data set D
Require: Loss weight function w() Require: Loss weight function w()

Require: Student sampling steps NV
for K iterations do

0 n > Init student from teacher
while not converged do while not converged do
x ~D > Sample data x~7D
t ~U|0,1] > Sample time t=1i/N, i~ Cat[l,2,...,N]
e ~N(0,T) > Sample noise e ~ N(0, )
7z, = ;X + o, > Add noise to data Zy = QX + Ot€

# 2 steps of DDIM with teacher
== N, " =1=1T/N

zy = oy X, (2) + gﬁ(zt — ouXp(2t))
Zrr = atnfcn(ztr) -+ aatt” (Zt/ - at/xn (Zt/))
5'( =x D Clean data is target for x S Z::: —8:::7;32 > Teacher x target
= logla? /o?] > log-SNR At = logla? /o?]
Le = w<)\t)||x —Xg(2¢)||3 > Loss Lo = w(\)|[X — Xp(24)][5
0« 0 —~vVgLg > Optimization 0« 0 —~vVgLg
end while end while
n <0 > Student becomes next teacher
N < N/2 > Halve number of sampling steps
end for

Salimans & Ho, “Progressive distillation for fast sampling of diffusion models”, ICLR 2022. 101
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Latent-space diffusion models

Variational autoencoder + score-based prior

Encoder

e ozl
: (e N

- [

Re'cons‘t. G ——

p(x|zo) ~ Decoder KL(q(2o|x)||p(20))
. J U )
Y Y
Variational Autoencoder Denoising Diffusion Prior
Main Idea

Encoder maps the input data to an embedding space

Denoising diffusion models are applied in the latent space

Vahdat et al., “Score-based generative modeling in latent space”, NeurlPS 2021.

Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR 2022.
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Latent-space diffusion models

Variational autoencoder + score-based prior

Encoder

e ozl
: (e N

- [

Re'cons‘t. G ——

p(x|z0) Decoder KL(q(zo[x)||p(20))
. o J \/ )
Variational Autoencoder Denoising Diffusion Prior
Advantages:

(1) The distribution of latent embeddings close to Normal distribution > Simpler denoising, Faster Synthesis/
(2) Augmented latent space > More expressivity!

(3) Tailored Autoencoders > More expressivity, Application to any data type (graphs, text, 3D data, etc.) !

Vahdat et al., “Score-based generative modeling in latent space”, NeurlPS 2021. .
Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR 2022.
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Latent-space diffusion models

Training objective: score-matching for cross entropy

Encoder p(zo) Latent Space Diffusion

P(Zl)

Datax

- =N
. o%\”é:%O I'4

oO—— e _————@
Reconst.

| . .
p(x|zo) Decoder KL(q(zo|x)||p(z0)) Latent Space Denoising

L(x,0,0,v%) = Ey, (20]x) [— 108 Py (X|20)] +KL(ge (z0]x)||pe(Z0))
= Egy molx) [~ 108 Py (X[20)|+Eqy (0 x) [108 4 (20[%)] B,y (5 ]x) [~ 108 o (20))

A _J/
TV TV WV

reconstruction term negative encoder entropy cross entropy
CE(q(2o[x)[|P(20)) = Etnrsio,11 | =5 Ba(ae,z0x) ||IVz, 108 9(Z¢|20) =V, logp(ze) |2 | + 7 log | 2meag
( Y ] \ Y J \ Y J ( Y J - \ Y
time Forward Diffusion Trainable Constant
sampling diffusion kernel score function

Vahdat et al., “Score-based generative modeling in latent space”, NeurlPS 2021. 104
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Part 3-2:

Q: How to do high-resolution conditional generation?




Impressive conditional diffusion models

Text-to-image generation

DALL-E 2 IMAGEN
“a propaganda poster depicting a cat dressed as french “A photo of a raccoon wearing an astronaut helmet,
emperor napoleon holding a piece of cheese” looking out of the window at night.”

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022.
Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022.
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Impressive conditional diffusion models

Super-resolution & colorization

Input : 64x64 o S Output :

T
%

Lo
S

Colorization

Super-resolution Colorization

Saharia et al., “Palette: Image-to-Image Diffusion Models”, arXiv 2021. 107
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Impressive conditional diffusion models

Panorama generation

& Generated Input Generated =

B\

Saharia et al., “Palette: Image-to-Image Diffusion Models”, arXiv 2021. 108
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Conditional diffusion models

Include condition as input to reverse process

1
Reverse process: pg(xo.r|c) = p(xz) | [ Po(xe-1[%t,€),  po(xi-1]xs,€) = N(xi-15 (x4, 8, €), T (1, £, €))
i=1

Variational

upper bound: L9(x0lc) = K, LT(XO) + ZDKL(Q(Xt—llxtaxO) ” pG(Xt_1|Xt,C)) — log pg(xp|x1,€) | -

t>1

Incorporate conditions into U-Net

Scalar conditioning: encode scalar as a vector embedding, simple spatial addition or adaptive
group normalization layers.

Image conditioning: channel-wise concatenation of the conditional image.

Text conditioning: single vector embedding - spatial addition or adaptive group norm / a seq of
vector embeddings - cross-attention.



Classifier guidance

Using the gradient of a trained classifier as guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (ug(x:), Xg(x¢)), classi-
fier p,(y|x:), and gradient scale s.

Input: class label y, gradlent scale s 5core model Classifier gradient

z7 < sample from N(0
for all ¢ from T to 1 do / /
/’L7E (_,U'H xt 29 xt

Ti_1 sample from NV (p + sX V,, log py(y|x:), 2
end for
return zg

Main Idea

For class-conditional modeling of p(X:|c), train an extra classifier p(c|x¢)

Mix its gradient with the diffusion/score model during sampling

Dhariwal and Nichol, “Diffusion models beat GANs on image synthesis”, NeurlPS 2021. 110
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Classifier guidance

Using the gradient of a trained classifier as guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model (ug(x:), Xg(x¢)), classi-
fier p,(y|x:), and gradient scale s.

Input: class label y, gradlent scale s 5core model Classifier gradient

z7 < sample from N(0
for all ¢ from T to 1 do / /
2 — po(xe), g ()

Ti_1 sample from NV (p + sX V,, log py(y|x:), 2
end for
return zg

Main Idea
Sample with a modified score:  Vy,|log p(x;|c) 4+ wlog p(c|x;)]

Approximate samples from the distribution ﬁ(Xt’C) X p(Xt’C)P(C‘Xt)w

Dhariwal and Nichol, “Diffusion models beat GANs on image synthesis”, NeurlPS 2021.
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Classifier-free guidance

Get guidance by Bayes’ rule on conditional diffusion models

Instead of training an additional classifier, get an “implicit classifier” by jointly training a conditional and unconditional
diffusion model:

p(c|x:) o< p(xt|e)/p(x:)

e N

Conditional diffusion model Unconditional diffusion model

In practice, p(xtlc) and p(Xt) by randomly dropping the condition of the diffusion model at certain chance.

The modified score with this implicit classifier included is:

Vi [log p(x¢|c) + wlog p(c|x;:)] = Vx,[log p(x¢[c) + w(log p(x¢|c) — log p(x))]

= Vx,[(1 + w) log p(x¢t|c) — wlog p(xt)]

Ho & Salimans, “Classifier-Free Diffusion Guidance”, 2021. 112
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Classifier-free guidance

Trade-off for sample quality and sample diversity

__nvagﬁmﬁ
e PRt e
e S 4y
AT A YA
SEl<te ¥ I s,
BRI EET S

Non-guidance w=1 W =

Large guidance weight (w) usually leads to better individual sample quality but less sample diversity.

Ho & Salimans, “Classifier-Free Diffusion Guidance”, 2021. 113
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Cascaded generation

Pipeline

256 X256

Class ID = 213

“Irish Setter”
[ ]

AN

Model 2 '

A 4
h 4

Model 1 Model 3

Cascaded Diffusion Models outperform Big-GAN in FID and IS and VQ-VAE2 in Classification Accuracy Score.

Ho et al., “Cascaded Diffusion Models for High Fidelity Image Generation”, 2021. 114
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Noise conditioning augmentation

Reduce compounding error

Need robust super-resolution model:

Training conditional on original low-res images from the dataset. . .
— Mismatch issue

Inference on low-res images generated by the low-res model. -

Noise conditioning augmentation:
During training, add varying amounts of Gaussian noise (or blurring by Gaussian kernel) to the low-res images.
During inference, sweep over the optimal amount of noise added to the low-res images.

BSR-degradation process: applies JPEG compressions noise, camera sensor noise, different image interpolations for
downsampling, Gaussian blur kernels and Gaussian noise in a random order to an image.

Ho et al., “Cascaded Diffusion Models for High Fidelity Image Generation”, 2021.

Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021. 1
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Summary

Questions to address with advanced techniques

Q1: How to accelerate the sampling process?
Advanced forward diffusion process
Advanced reverse process
Hybrid models & model distillation
Q2: How to do high-resolution (conditional) generation?
Conditional diffusion models
Classifier(-free) guidance

Cascaded generation



Today’s Program

Introduction Arash 10 min
Part (1): Denoising Diffusion Probabilistic Models Arash 35 min
Part (2): Score-based Generative Modeling with Differential Equations Karsten 45 min
Part (3): Advanced Techniques: Accelerated Sampling, Conditional Generation, and Beyond Ruiqi 45 min
Applications (1): Image Synthesis, Text-to-Image, Controllable Generation Ruiqi 15 min
Applications (2): Image Editing, Image-to-Image, Super-resolution, Segmentation Arash 15 min
Applications (3): Video Synthesis, Medical Imaging, 3D Generation, Discrete State Models Karsten 15 min
Conclusions, Open Problems and Final Remarks Arash 10 min

cvpr2022-tutorial-diffusion-models.github.io

117



Applications (1):
Image Synthesis, Controllable Generation,
Text-to-Image




Text-to-image generation
Inverse of image captioning

Conditional generation: given a text prompt ¢, generate high-res images x.

A chrome-plated duck with a golden beak

arguing with an angry turtle in a forest

Video source: Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 119
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GLIDE

OpenAl

A 64x64 base model + a 64x64 — 256x256 super-resolution model.

Tried classifier-free and CLIP guidance. Classifier-free guidance works better than CLIP guidance.

1Y

“a hedgehog using a “a corgi wearing a red bowtie “robots meditating in a “a fall landscape with a small
calculator” and a purple party hat” vipassana retreat” cottage next to a lake”

Samples generated with classifier-free guidance (256x256)

Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021. 120
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CLIP guidance

What is a CLIP model?

Trained by contrastive cross-entropy loss:

Pepper the

eXp(f(Xz') . g(C]‘)/T) aussie pup

exp(f(x;) - g(c;)/7)

L

—1 — 1

o8 Zk exp(f(xi) - g(ck)/T) o8 Zk exp(f(xz) - Q(Cj)/'r)[[

The optimal value of f(x) - g(c) is

p(x; c)
p(x)p(c

log

) = log p(c|x) — log p(c)

Radford et al., “Learning Transferable Visual Models From Natural Language Supervision”, 2021.

\
Text
Encoder l i l l
/ T 1Bl TN
—» I Rl 1,7, | 1,-T; R
\ L3 I LT, [ 1T, i
E'r’:lz%zr >R | I, T, | 1,-T, [ o
/
> B | I T; | IyT, | IyTs E T

Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021.
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CLIP guidance

Replace the classifier in classifier guidance with a CLIP model

Sample with a modified score:

Vi [log p(x¢|c) + wlog p(c|x;)]

— th[logp(xf]c) + w(log p(c|xt) — log p(c))]

( J

CLIP model

= Vy,|log p(x¢|c) + w(f(x¢) - g(c))]

Pepper the
aussie pup

[

L

Radford et al., “Learning Transferable Visual Models From Natural Language Supervision”, 2021.

\
Text
Encoder l l l l
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Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021.
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GLIDE

OpenAl

Fine-tune the model especially for inpainting: feed randomly occluded images with an additional mask channel as
the input.

TEY N
- .*‘ ‘;: ‘

=

“an old car in a snowy forest” “a man wearing a white hat”

Text-conditional image inpainting examples

Nichol et al., “GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models”, 2021. 123
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DALL-E 2

OpenAl

t N
b v

“ 4“
-

e A, .

a shiba inu wearing a beret and black turtleneck a close up of a handpalm with leaves growing from it

1kx1k Text-to-image generation.
Outperform DALL-E (autoregressive transformer).

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 124
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DALL-E 2

Model components

“a corgi
playing a
flame
throwing

Prior: produces CLIP image embeddings conditioned on the caption.

Decoder: produces images conditioned on CLIP image embeddings and text.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 125
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DALL-E 2

Model components

]
_ - CLIP objective . H Lmngoder
“a corgi a
playing a
flame T
throwing o 0
trumpet” 188560 i

OO0
v
OO0
v
O
O

prior

Why conditional on CLIP image embeddings?
CLIP image embeddings capture high-level semantic meaning; latents in the decoder model take care of the rest.

The bipartite latent representation enables several text-guided image manipulation tasks.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 126
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DALL-E 2

Model components (1/2): prior model

CLIP objective i
[ - > Iemngoder
“a corgqi 0
playing a =
flame I =
throwing L
" — . o : O O
trumpet S O
O»O)»
moO O
_______________________________________ — — 8-»8-»8 > O O
O O O
prior decoder

Prior: produces CLIP image embeddings conditioned on the caption.

Option 1. autoregressive prior: quantize image embedding to a seq. of discrete codes and predict them
autoregressively.

Option 2. diffusion prior: model the continuous image embedding by diffusion models conditioned on caption.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 127
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DALL-E 2

Model components (2/2): decoder model

[TTTTTT]

CLIP objective img
- > encoder
“a corgi
playing a ~
flame N W | T
throwing
T — LA -
trumpet OO000
' O O
_________________________________ ——— O+ —
O O
prior

Decoder: produces images conditioned on CLIP image embeddings (and text).
Cascaded diffusion models: 1 base model (64x64), 2 super-resolution models (64x64 — 256x256, 256x256 — 1024x1024).
Largest super-resolution model is trained on patches and takes full-res inputs at inference time.

Classifier-free guidance & noise conditioning augmentation are important.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 128
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DALL-E 2

Bipartite latent representations

Bipartite latent representations (z, x7)

[(TTTTTTT]
O
v
v

— z: CLIP image embeddings >

XT: inversion of DDIM sampler
(latents in the decoder model)

Near exact
reconstruction

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 129
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DALL-E 2

Image variations

Fix the CLIP embedding z.
Decode using different decoder latents X7

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 130
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DALL-E 2

Image interpolation

:
3 9"&
-3 7

"}a

/]

-

. ’
.
14 h -
»

Interpolate image CLIP embeddings Z.

Use different X7 to get different interpolation trajectories.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022.
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DALL-E 2

Text Diffs

- 4 —

a photo of a cat — an anime drawing of a super saiyan cat, artstation

USRS ¢ ) ks 'ii‘::fmha-"-a L

Tﬂilma.l@ | BRI Ll W

—

——

a photo of a victorian house — a photo of a modern house

a photo of an adult lion — a photo of lion cub

Change the image CLIP embedding towards the difference of the text CLIP embeddings of two prompts.

Decoder latent is kept as a constant.

Ramesh et al., “Hierarchical Text-Conditional Image Generation with CLIP Latents”, arXiv 2022. 132
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Imagen

Google Research, Brain team

Input: text; Output: 1kx1k images

* An unprecedented degree of photorealism

« SOTA automatic scores & human ratings
« Adeep level of language understanding
« Extremely simple

* no latent space, no quantization

A brain riding a rocketship heading towards the moon.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 133
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Imagen

Google Research, Brain team

- s, . y
\ 5 \ Imagen J

A photo of a Shiba Inu dog with a backpack riding a
bike. It is wearing sunglasses and a beach hat.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 134
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Imagen

Google Research, Brain team

pid
i
<t

“w
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L S S . . R Imagen )
" . Vs F LS k. e ¥

A dragon fruit wearing karate belt in the snow.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 135
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Imagen

Google Research, Brain team

A relaxed garlic with a blindfold reading a newspaper
while floating in a pool of tomato soup.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 136
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Imagen

Google Research, Brain team

L s i

A cute hand-knitted koala wearing a sweater with ‘CVPR" written on it.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 137
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Imagen

“A Golden Retriever dog wearing a blue

Text checkered beret and red dotted turtleneck.”

\

Frozen Text Encoder

Key modeling components:

Text Embedding
Y Y-ﬁ
Cascaded diffusion models Text-to-Image $‘
Diffusion Model
Classifier-free guidance and dynamic lﬁ4x641mage \

Diffusion Model

th reShOld]ngo 4’\ Super-Resolution

Frozen large pretrained language models as
text encoders. (T5-XXL)

256 x 256 Image

Y

Super-Resolution
Diffusion Model

l

1024 x 1024 Image

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 138
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Imagen

Key observations:

Beneficial to use text conditioning for all super-res
models.

Noise conditioning augmentation weakens
information from low-res models, thus needs text
conditioning as extra information input.

Scaling text encoder is extremely efficient.
More important than scaling diffusion model size.

Human raters prefer T5-XXL as the text encoder over
CLIP encoder on DrawBench.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022.

Text

Y

Frozen Text Encoder

Text Embedding

Y

Text-to-Image
Diffusion Model

L

l&l x 64 Image

Super-Resolution
Diffusion Model

256 x 256 Image

Y

Super-Resolution
Diffusion Model

l

1024 x 1024 Image

“A Golden Retriever dog wearing a blue

checkered beret and red dotted turtleneck.”
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Imagen

Dynamic thresholding

Large classifier-free guidance weights — better text alignment, worse image quality

I

2 5 ~g— Static thresholding
- =g (ynamic thresholding
)
E
A 20
O (=
q) —(
a | ®
=
E 15 | ﬁ
(Vp]
—
Q
s
o 10 |- d
9 0

[
0.26 0.27 0.28 0.29
CLIP Score

Better text alignment

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 140
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Imagen

Dynamic thresholding

Large classifier-free guidance weights — better text alignment, worse image quality

Hypothesis : at large guidance weight, the generated images are saturated due to the very large gradient updates
during sampling

Solution - dynamic thresholding: adjusts the pixel values of samples at each sampling step to be within a dynamic range
computed over the statistics of the current samples.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 141
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Imagen

Dynamic thresholding

Large clas:

Hypothesi
sampling

Solution -
range com

e e

Static thresholding

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 142
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Imagen

DrawBench: new benchmark for text-to-image evaluations

A set of 200 prompts to evaluate text-to-image models across multiple dimensions.

E.g., the ability to faithfully render different colors, numbers of objects, spatial relations, text in the scene, unusual
interactions between objects.

Contains complex prompts, e.g, long and intricate descriptions, rare words, misspelled prompts.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 143
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Imagen

DrawBench: new benchmark for text-to-image evaluations

A set of 200 proi 8

E.g., the
interactio

cene, unusual

Contains ¢

A pear cut into seven pieces A photo of a confused grizzly bear A small vessel propelled on water
arranged in a ring. in calculus class. by oars, sails, or an engine.

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022. 144
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Imagen got SOTA automatic evaluation scores

on COCO dataset

Zero-shot
Model FID-30K FID-30K
AttnGAN [76] 35.49
DM-GAN [83] 32.64
DF-GAN [69] 21.42
DM-GAN + CL [78] 20.79
XMC-GAN [81] 9.33
LAFITE [82] 8.12
Make-A-Scene [22] 195
DALL-E [53] 17.89
LAFITE [82] 26.94
GLIDE [41] 12.24
DALL-E 2 [54] 10.39
Imagen (Our Work) 7.27

100%

50%

0%

Imagen

Evaluations

Imagen is preferred over recent work by human raters in sample
quality & image-text alignment on DrawBench.

D Imagen D DALL-E 2

.| Imagen D GLIDE

D Imagen D VQGAN+CLIP

H
=

H

H

I Ed

HA

=

D Imagen D Latent Diffusion

HH

-

Alignment Fidelity

Alignment

Fidelity

Saharia et al., “Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding”, arXiv 2022.

Alignment Fidelity

Alignment Fidelity
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Diffusion Autoencoders

Learning semantic meaningful latent representations in diffusion models

....................................................

(optional)

Zsom
oo <= Latent DDIM |

. For unconditional sampling :

....................................................

Semantic
encoder

Conditional DDIM

Stochastic encoder + Decoder

- Image
Encoder path (semantic) - Image —» Zgem
Encoder path (stochastic) : Image XT
Decoder path . (Zsem, XT) => Image (reconstructed)

Preechakul et al., “Diffusion Autoencoders: Toward a Meaningful and Decodable Representation”, CVPR 2022. 146
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Diffusion Autoencoders

Learning semantic meaningful latent representations in diffusion models

Real image

Changing the semantic latent Zsem

Preechakul et al., “Diffusion Autoencoders: Toward a Meaningful and Decodable Representation”, CVPR 2022. 147
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Diffusion Autoencoders

Learning semantic meaningful latent representations in diffusion models

Reconstruction ' , . p
(Zsem, XT) Varying stochastic subcode (Zsem,X7)

Preechakul et al., “Diffusion Autoencoders: Toward a Meaningful and Decodable Representation”, CVPR 2022. 148
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Applications (2):
Image Editing, Image-to-Image,
Super-resolution, Segmentation

Diffusion
Models




Super-Resolution

Super-Resolution via Repeated Refinement (SR3)

Image super-resolution can be considered as training p(X|y) where y is a low-resolution image and x is the corresponding
high-resolution image

Train a score model for x conditioned on y using:

Ex.y Econro.n) Bt llea(xt, t;y) —ell

The conditional score is simply a U-Net with x; and y (resolution image) concatenated.

l> €p Xt7t7y

Saharia et al., Image Super-Resolution via lterative Refinement, 2021 152
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Super-Resolution

Super-Resolution via Repeated Refinement (SR3)

Natural Image Super-Resolution 64x64 — 256 <256

Bicubic Re_grqssion SR3 (ours) Rgfe;ence

Saharia et al., Image Super-Resolution via lterative Refinement, 2021 153
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Image-to-Image Translation

Palette: Image-to-Image Diffusion Models

Many image-to-image translation applications can be considered as training p(X|y) where y is the input image.
For example, for colorization, x is a colored image and y is a gray-level image.

Train a score model for x conditioned on y using:

Exy Ecopno1) Et [leg(xt, t;y) —ellp

The conditional score is simply a U-Net with x; and y concatenated.

Saharia et al., Palette: Image-to-Image Diffusion Models, 2022 154
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Image-to-Image Translation

Palette: Image-to-Image Diffusion Models

Colorization
Uncropping

Inpainting
JPEG restoration

Saharia et al., Palette: Image-to-Image Diffusion Models, 2022 155
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Conditional Generation

Iterative Latent Variable Refinement (ILVR)

A simple technique to guide the generation process of an unconditional diffusion model using a reference image.

Given the conditioning (reference) image y the generation process is modified to pull the samples towards the reference
image.

Latent Variable

fort="1T,...,1do

; Refinement  q(y,-1|y)
Po(Xi-11xt) ' z ~ N(0,I)
. / xy_q1 ~ po(xi_q1|xe) > unconditional proposal
t_l,' yi—1 ~ q(ys—1ly) > condition encoding
| Ti—1 < ON(Yt—1) + Ti—1 — N (Ti—1)

end for

Choi et al., ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models, ICCV 2021 156
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Conditional Generation

Iterative Latent Variable Refinement (ILVR)

(a) Generation from various downsampling factors

,, »Reference N=4 _ N=8 N=16

(b) Image Translation (c) Paint-to-Image (d) Editing with Scribbles

S Yo

Pdrtrait Realistic Image Oil Painting Realistic Image Scribbled New Watermark

Choi et al., ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models, ICCV 2021 157
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Semantic Segmentation

Label-efficient semantic segmentation with diffusion models

Can we use representation learned from diffusion models for downstream applications such as semantic segmentation?

€o(zs,t) Feature maps

Pixel representation

P ca e G !
4
V
Pixel classifiers
1

(7 T\

[/ AN/ P l ==

q}‘_/‘ L Upsample DDDD

Baranchuk et al., Label-Efficient Semantic Segmentation with Diffusion Models, ICLR 2022 158
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Semantic Segmentation

Label-efficient semantic segmentation with diffusion models

The experimental results show that the proposed method outperforms Masked Autoencoders, GAN and VAE-based models.

\ AN | ' ' ™ - : \
FFHQ /g A : , N A | | .
¥ e s fos Ed Ly 5 553 A
we DOVE0A 0 AHAAERE
classes = = -~ 1 - | P TR
A e & < T " - = R=
LSUN-Bedroom | ¥ | ==
28 classes 3 b o s - :
ADE-Bedroom o u am;;
30 classes

= ,A ‘c 4

LSUN-Cat SO0 { .

15 classes A % ﬁ ,,-7% —‘ _‘
wﬁﬁﬁﬁﬂ Gl

Image Groundtruth DDPM Image Groundtruth DDPM Image Groundtruth DDPM Image Groundtruth DDPM Image Groundtruth DDPM

LSUN-Horse
21 classes

Baranchuk et al., Label-Efficient Semantic Segmentation with Diffusion Models, ICLR 2022 159
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Image Editing
SDEdit

Forward diffusion brings two distributions close to each other

Perturb with SDE Reverse SDE

Input Output

Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022 160
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Image Editing
SDEdit

Input
(guide)

Generated
images

LSUN bedroom LSUN church CelebA

Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022
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Adversarial Robustness

Diffusion Models for Adversarial Purification

A(dversarial 1mage
“Gibbon”

Diffused image

Purified image
“Panda”

Adversarial )

1mage

I Adversarial attack (Backpropagation through SDE)

1mage

>

Classifier

I—> “Panda” —

- - -p» “Gibbon”

Nie et al., Diffusion Models for Adversarial Purification, ICML 2022
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Nie et al.,

Adversarial Robustness

Diffusion Models for Adversarial Purification

(b) Eyeglasses

Diffusion Models for Adversarial Purification, ICML 2022

100
B Laidlaw et al. 2021

90+ mam Dolatabadi et al. 2021
30 B DiffPure (Ours)

70"

60"

50-

40

30

20"

Clean StAdv

Accuracy (%)

Unseen threat models

Comparison with state-of-the-art defense methods against
unseen threat models (including AutoAttack 4., AutoAttack ¥, and
StdAdv) on ResNet-50 for CIFAR-10.
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Applications (3):
Video Synthesis, Medical Imaging,
3D Generation, Discrete State Models




Video Generation

Samples from a text-conditioned video dlffusmn model, conditioned on the string fireworks.

(video from: Ho et al., “Video Diffusion Models”, arXiv, 2022,
https://video-diffusion.github.io/)

Ho et al., “Video Diffusion Models”, arXiv, 2022

Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022

Yang et al., “Diffusion Probabilistic Modeling for Video Generation”, arXiv, 2022

Hoppe et al., “Diffusion Models for Video Prediction and Infilling”, arXiv, 2022

Voleti et al., “MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation”, arXiv, 2022
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Video Generation

Video Generation Tasks: => Learn one model for everything:

Unconditional Generation (Generate all frames) Architecture as one diffusion model over all frames concatenated.
Future Prediction (Generate future from past fames) Mask frames to be predicted; provide conditioning frames; vary

Past Prediction (Generate past from future fames) applied masking/conditioning for different tasks during training.

Use time position encodings to encode times.

=

Interpolation (Generate intermediate frames)

Video UNet Y. Xt
v K x 64 x 64 xC

=) Learn a model of the form: ot M
\i Kx8x8xC
ResNet Block + Attn
+ Downsample

t1 K |<T1 TM
pe(X 7...’X X 7""X )

i VK x4x4xC
iﬂResNet 8Io§k + Attnri
. T T s i D VK x4x4xC
G-Iven frames: X 1’ e o o . X M | .4 . ..-:".'ci'l'..!."",: },,, t 1 Resrjeltjslc;cni:;leAnn
. . t]_ tK {.. —— : J:/l\'xSxSxC
Frames to be predicted: X', -+ ,X BB B B v, o | I

ResNet Block + Upsample

. . { x 64 x 64 x C
Ho et al., “Video Diffusion Models”, arXiv, 2022 THH : e i
Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022
Yang et al., “Diffusion Probabilistic Modeling for Video Generation”, arXiv, 2022
Hoppe et al., “Diffusion Models for Video Prediction and Infilling”, arXiv, 2022
Voleti et al., “MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation”, arXiv, 2022

(image from: Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022)

168



https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2205.11495
https://arxiv.org/abs/2203.09481
https://arxiv.org/abs/2206.07696
https://arxiv.org/abs/2205.09853

Video Generation

Architecture Details

Architecture Details: => Learn one model for everything:

Data is 4D (image height, image width, #frames, channels) - Architecture as one diffusion model over all frames concatenated.

Option (1): 3D Convolutions. Can be Mask frames to be predicted; provide conditioning frames; vary
computationally expensive. applied masking/conditioning for different tasks during training.

Use time position encodings to encode times.

=

Option (2): Spatial 2D Convolutions + Attention
Layers along frame axis.

Video UNet Y. Xt
v K x 64 x 64 xC

=) Additional Advantage:

ResNet Block + Downsample
vVEKx32x32xC

VEKx8x8xC
ResNet Block + Attn
+ Downsample
- VKx4x4xC
ResNet Block + Attn }
\LI\'xi‘x4x(‘
ResNet Block + Attn
+ Upsample
J./ Kx8x8xC

lgnoring the attention layers, the model can be
trained additionally on pure image data!

VK x32x32xC
ResNet Block + Upsample
v K x64x64xC
Xt-1

Ho et al., “Video Diffusion Models”, arXiv, 2022 .ﬂ
Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022

Yang et al., “Diffusion Probabilistic Modeling for Video Generation”, arXiv, 2022
Hoppe et al., “Diffusion Models for Video Prediction and Infilling”, arXiv, 2022
Voleti et al., “MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation”, arXiv, 2022

(image from: Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022)
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Video Generation

Results

Long term video generation in hierarchical manner:

1. Generate future frames in sparse manner, conditioning on frames far back

2. Interpolate in-between frames

! 2
Test Data:
1+ hour coherent video
generation possible!
Generated:

. - ) . (video from: Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022,
Ho et al., "Video Diffusion Models”, arXiv, 2022 https://plai.cs.ubc.ca/2022/05/20/flexible-diffusion-modeling-of-long-videos/)

Harvey et al., “Flexible Diffusion Modeling of Long Videos”, arXiv, 2022

Yang et al., “Diffusion Probabilistic Modeling for Video Generation”, arXiv, 2022

Hoppe et al., “Diffusion Models for Video Prediction and Infilling”, arXiv, 2022

Voleti et al., “MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation”, arXiv, 2022 170
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Solving Inverse Problems in Medical Imaging

Forward CT or MRI imaging process (simplified):

Sinogram  diag(A) kspace diag(A)

sparse-view CT undersampled MRI

(image from: Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022)

Inverse Problem:
Reconstruct original image from sparse measurements.

Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022 171
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Solving Inverse Problems in Medical Imaging

High-level idea: Learn Generative Diffusion Model as “prior”; then guide synthesis conditioned on sparse observations:

PSNR: 15.32, SSIM: 0.796 PSNR: 17.79, SSIM: 0.454 PSNR: 17.60, SSIM: 0.471 PSNR: 27.88, SSIM: 0.908 PSNR: 35.57, SSIM: 0.929

(a) FISTA-TV (b) cGAN (c) Neumann (d) SIN-4c-PRN (e) Ours (f) Ground truth
(image from: Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022)

=> Qutperforms even fully-supervised methods.

Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, ICLR, 2022 172
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Solving Inverse Problems in Medical Imaging

Lots of Literature

Song et al., “Solving Inverse Problems in Medical Imaging with Score-Based Generative Models”, /CLR, 2022

Chung and Ye, “Score-based diffusion models for accelerated MRI”, Medical Image Analysis, 2022

Chung et al., “Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models for Inverse Problems through Stochastic Contraction”, CVPR, 2022
Peng et al., “Towards performant and reliable undersampled MR reconstruction via diffusion model sampling”, arXiv, 2022
Xie and Li, “Measurement-conditioned Denoising Diffusion Probabilistic Model for Under-sampled Medical Image Reconstruction”, arXiv, 2022

Luo et al, “MRI Reconstruction via Data Driven Markov Chain with Joint Uncertainty Estimation”, arXiv, 2022
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3D Shape Generation

Point clouds as 3D shape representation can be diffused easily and intuitively

Denoiser implemented based on modern point cloud-processing networks (PointNets & Point-VoxelCNNs)

po(Xe|xt+1)
p(xT) Q(Xt+1|xt) X0)

(image from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021
Luo and Hu, “Diffusion Probabilistic Models for 3D Point Cloud Generation”, CVPR, 2021 174



https://arxiv.org/abs/2104.03670
https://arxiv.org/abs/2103.01458

3D Shape Generation

Point clouds as 3D shape representation can be diffused easily and intuitively

Denoiser implemented based on modern point cloud-processing networks (PointNets & Point-VoxelCNNs)

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021,
https://alexzhou907.github.io/pvd)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 175
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3D Shape Generation

Shape Completion

Can train conditional shape completion diffusion model (subset of points fixed to given conditioning points):

&
&° R

b @

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021,
https://alexzhou907.github.io/pvd)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 176
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3D Shape Generation

Shape Completion - Multimodality

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021,
https://alexzhou907.github.io/pvd)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 177
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3D Shape Generation

Shape Completion - Multimodality - On Real Data

(video from: Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021,
https://alexzhou907.github.io/pvd)

Zhou et al., “3D Shape Generation and Completion through Point-Voxel Diffusion”, ICCV, 2021 178
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Towards Discrete State Diffusion Models

So far:

Continuous diffusion and denoising processes.

Noise

Fixed forward diffusion process: Q(Xt|Xt—1) — N(Xt§ V1-— Bt X1, BtI)

Reverse generative process: po(Xi—1|x¢) = N (x¢—1; prg(x¢, 1), 071)

- But what if data is discrete? Categorical?
Continuous perturbations are not possible!

(Text, Pixel-wise Segmentation Labels,
Discrete Image Encodings, etc.)
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Discrete State Diffusion Models

=) Categorical diffusion: q(x;:|x;_1) = Cat(xs;p = x: -1 Q) Reverse process can be parametrized

X, : one-hot state vector categorical distribution.

Q; : transition matrix |Q¢|;; = q(xt = jloi—1 = 1)

Ty ~ q(x2|T)) T, ~ q(x,|2H)
R P e © R N
b SCREC S > R
] 2 3 I 2 3 1 2 3
p(x2) p(x1) p(xo)

(image from: Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions”, NeurlPS, 2022)

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021
Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions”, NeurlPS, 2022
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Discrete State Diffusion Models

Uniform categorical diffusion: Progressive masking out of data
Options for forward process: B, (generation is “de-masking”)

Qi =(1—-08)I+ ?MT

Tailored to ordinal data
(e.g. discretized Gaussian)

(I(mt‘a:t—l)

(forward process)

(image from: Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021)

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021 181



https://arxiv.org/abs/2107.03006

Discrete State Diffusion Models

data sample at t=0

oooooooo
------

q(z |-’13t—1)

(forward process) ey
(reverse process)
generated at t=0 | t=T/4 | t=T/2 =T (;t‘e‘ztionar.yj o

(image from: Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021)

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021 182
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Discrete State Diffusion Models

Modeling Categorical Image Pixel Values

Progressive denoising
starting from all-
masked state.

Progressive denoising
starting from random
uniform state.

(with discretized Gaussian
denoising model)

(image from: Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021)

Austin et al., “Structured Denoising Diffusion Models in Discrete State-Spaces”, NeurlPS, 2021 183
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Discrete State Diffusion Models

Modeling Discrete Image Encodings

Input Visual Tokens Reconstruction

¥y ¥
Tokenization

=¥
Lty
/ Decoder \

Encoding images into latent space with discrete tokens, and
modeling discrete token distribution

_ =L Class-conditional model samples
Iterative generation

(images from: Chang et al., “MaskGIT: Masked Generative Image Transformer”, CVPR, 2022)

Chang et al., “‘MaskGIT: Masked Generative Image Transformer”, CVPR, 2022
Esser et al., “ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis”, NeurlPS, 2021 184
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Discrete State Diffusion Models

Modeling Pixel-wise Segmentations

xy ~ q(Tr|TT-1)

-———— ———

A SN A )
\_/ L= T —1 \_/ e o o
-1 ~ p(Tr-1|TT) R G N R R T

(image from: Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions”, NeurlPS, 2022)

Hoogeboom et al., “Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions”, NeurlPS, 2022 185



https://arxiv.org/abs/2102.05379

Today’s Program

Introduction Arash 10 min
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Part (3): Advanced Techniques: Accelerated Sampling, Conditional Generation, and Beyond Ruiqi 45 min
Applications (1): Image Synthesis, Text-to-Image, Controllable Generation Ruiqi 15 min
Applications (2): Image Editing, Image-to-Image, Super-resolution, Segmentation Arash 15 min
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cvpr2022-tutorial-diffusion-models.github.io

187



Conclusions, Open Problems and Final Remarks

Diffusion Modéls .




Summary: Denoising Diffusion Probabilistic Models

“Discrete-time” Diffusion Models

We started with denoising diffusion probabilistic models:

Forward diffusion process (fixed)

Data

Reverse denoising process (generative)

We showed how the denoising model can be trained by predicting noise injected in each diffused image:

Lsimple — EXONQ(X()),GNN(O,I),tNU(l,T) HE _ 69( Vay Xo+ V1 —ay e t)HQ
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Summary: Score-based Generative Models with Differential Egn.
“Continuous-time” Diffusion Models

In the second part, we considered the limit of an infinite number of steps with an infinitesimal noise

Generative Reverse Diffusion SDE (stochastic) Generative Probability Flow ODE (deterministic):

= <
q(XO) Generation with Reverse Diffusion SDE Q(XT) Q(XO) Generation with Probability Flow ODE Q(XT)

X¢ | X0 XT

These continuous-time diffusion models allow us to choose discretization and ODE/SDE solvers at test time.
190



Summary: Advanced Techniques

Acceleration, Guidance and beyond

In the third part, we discussed several advanced topics in diffusion models.

How can we accelerate the sample generation?
[Image credit: Ben Poole, Mohammad Norouzi]

Simple forward process slowly maps data to noise

Reverse process maps noise back to data with a denoising model

How to scale up diffusion models to high-resolution (conditional) generation?
Cascaded models

Guided diffusion models
191



Summary: Applications

We covered many successful applications of diffusion models:
Image generation, text-to-image generation, controllable generation
Image editing, image-to-image translation, super-resolution, segmentation, adversarial robustness

Discrete models, 3D generation, medical imaging, video synthesis



Open Problems (1)

Diffusion models are a special form of VAEs and continuous normalizing flows
Why do diffusion models perform so much better than these models?

How can we improve VAEs and normalizing flows with lessons learned from diffusion models?

Sampling from diffusion models is still slow especially for interactive applications
The best we could reach is 4-10 steps. How can we have one step samplers?

Do we need new diffusion processes?

Diffusion models can be considered as latent variable models, but their latent space lacks semantics

How can we do latent-space semantic manipulations in diffusion models



Open Problems (2)

How can diffusion models help with discriminative applications?
Representation learning (high-level vs low-level)
Uncertainty estimation

Joint discriminator-generator training

What are the best network architectures for diffusion models?
Can we go beyond existing U-Nets?
How can we feed the time input and other conditioning?

How can we improve the sampling efficiency using better network designs?



Open Problems (3)

How can we apply diffusion models to other data types?
3D data (e.g., distance functions, meshes, voxels, volumetric representations), video, text, graphs, etc.

How should we change diffusion models for these modalities?

Compositional and controllable generation
How can we go beyond images and generate scenes?

How can we have more fine-grained control in generation?

Diffusion models for X
Can we better solve applications that were previously addressed by GANs and other generative models?

Which applications will benefit most from diffusion models?
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