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SOTA of CNN Architecture

Part1 Part2
» AlexNet (2012) > EfficientNet (2019)
> VGG (2014) > Noisy Student (2020)

» Meta - Pseudo Labels (2020)
» InceptionNet / GoogleNet (2014)
> Inception V2 (2015) > EfficientDet (2021)
» Inception V3 (2016)
> EfficientNetV2 (2021)
» ResNet (2015)

» Inception V4, Inception-ResNet (2016)

» DenseNet (2017)

> BigTransfer (BiT) (2020) *  GoogleNet (2014 ImageNet winner) : 74.8% top-1 accuracy, about 6.8M parameters

+ SENet (2017 ImageNet winner) : 82.7% top-1 accuracy, about 145M parameters
*  GPipe (2018, SOTA IMageNet) : 84.% top-1 accuracy, about 557M parameters
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Abstract

» Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled
up for better accuracy if more resources are available.

* In this paper, we systematically study model scaling and identify that carefully balancing network depth, width,
and resolution can lead to better performance.

* Propose a new scaling method that uniformly scales all dimensions of depth/width/resolution using a simple
yet highly effective compound coefficient. Demonstrate the effectiveness of this method on scaling up
MobileNets and ResNet.

* Use neural architecture search to design a new baseline network and scale it up to obtain a family of
models, called EfficientNets, which achieve much better accuracy.

» EfficientNet-B7 achieves state-of-the-art 84.3% top-1 accuracy on ImageNet, while being 8.4x smaller and 6.1x
faster on inference than the best existing ConvNet.

» Our EfficientNets also transfer well and achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%),
and 3 other transfer learning datasets, with an order of magnitude fewer parameters.

» Source code is at https: //github.com/tensorflow/tpu/tree/master/models/official/efficientnet.



1. Introduction

» Scaling up ConvNets is widely used to achieve better accuracy. » Authors want to study and rethink the process of scaling up ConvNets.
v" ResNet (He et al., 2016) can be scaled up from ResNet-18 to v" Question : Is there a Principled method to scale up ConvNets
ResNet-200 by using more layers that can achieve better accuracy and efficiency?

v" GPipe (Huang et al., 2018) achieved 84.3% ImageNet top-1
accuracy by scaling up a baseline model 4 times larger.

» Empirical study shows that it is critical to balance all dimensions of
network width/depth/resolution, and surprisingly such balance can be
achieved by simply scaling each of them with constant ratio.

* The most common way is to scale up ConvNets by their depth,
width, or image resolution.

v In previous work, it is common to scale only one of the three « Based on this observation, authors propose a compound scaling
dimensions. methods.

v" Though it is possible to scale two or three dimensions arbitrarily,
arbitrary scaling requires tedious manual tuning and still often
yields sub-optimal accuracy and efficiency.



Compound scaling method

+ Compound scaling method : Uniformly scales network width /

depth / resolution with a set of fixed scaling coefficients. h ___> wrh
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Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only
increases one dimension of network width, depth, or resolution. (e) is our proposed compound scaling
method that uniformly scales all three dimensions with a fixed ratio.

+ Effectiveness of model scaling
heavily depend on the baseline
network; Use neural architecture
search to develop a new baseline
network, and scale it up to obtain
a family of models, called
EfficientNets.



2. Related Work - ConvNet Accuracy

+ ConvNets have become increasingly more accurate by going bigger.

v" While the 2014 ImageNet winner GoogleNet (Szegedy et al.,
2015) achieves 74.8% top-1 accuracy with about 6.8M
parameters, the 2017 ImageNet winner SENet (Hu et al., 2018)
achieves 82.7% top-1 accuracy with 145M parameters.

v" Recently, GPipe (Huang et al., 2018) further pushes the state-of-
the-art ImageNet top-1 validation accuracy to 84.3% using
557M parameters.

@

 Although higher accuracy is critical for many applications, we have
already hit the hardware memory limit, and thus further accuracy
gain needs better efficiency.

2. Related Work - ConvNet Efficiency

Deep ConvNets are often over-parameterized.

v" Model compression (Han et al., 2016; He et al., 2018; Yang et
al., 2018) is a common way to reduce model size by trading
accuracy for efficiency.

v' ltis also common to handcraft efficient mobile-size ConvNets,
such as SqueezeNets, MobileNets, and ShuffleNets.

Recently, neural architecture search becomes increasingly
popular in designing efficient mobile-size ConvNets (Tan et al., 2019;
Cai et al., 2019) such as MNasNet.

¥

However, it is unclear how to apply these techniques for larger
models that have much larger design space and much more
expensive tuning cost.

Authors aims to study model efficiency for super large ConvNets that
surpass SOTA accuracy. Resort to Model scaling.



2. Related Work - Model Scaling

MobileNet body architecture

Input Depthwise separable convolution
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v’ ltis also well-recognized that bigger input image size will help
accuracy with the overhead of more FLOPS
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3.1 Problem Formulation

A ConvNet Layer i can be defined as a function: Y; = F;(X;), where
F; is operator, Y; is output tensor, X; is input tensor.

A ConvNet V'can be represented by a list of composed layer:

N=F,OO-0OF, O F X)) =0j=1,.k :Fj(Xl)

Define a ConvNet IV as:

Input tensor
/ Spatial Dimension

¥
N = i—1® @ X<Hi,Wi,Ci>
— 4 V\

. Channel Dimension
stage i

layer F; is repeated L; times in stage i

Unlike regular ConvNet designs that mostly focus on finding the
best layer architecture F;, model scaling tries to expand the
network length (L;), width (C;), and/or resolution (H;, W;)
without changing F; predefined in the baseline network.

By fixing F;, model scaling simplifies the design problem for new
resource constraints, but it still remains a large design space to
explore different (L;,C;,H;, W;) for each layer.

In order to further reduce the design space, we restrict that all
layers must be scaled uniformly with constant ratio. Our target
is to maximize the model accuracy for any given resource
constraints.

max  Accuracy(N(d, w.r))

d,w,r

st Ndwr)= ) FE (X g, s, wen)

i=1...s
Avemory (N) < target_memory

(2)
FLOPS(N) < target flops

Coefficients for
scaling network
depth d, width w,
and resolution r

» Practically, ConvNet layers are often partitioned into multiple stage
and all layers in each stage share the same architecture (ex.
ResNet : 5 stage, Zt stage & 2 E layerse= &2 07 |HIHY, AHI|
layer7} down-samplingst= A2 H|2|5t1)

.7:"1-. ﬁi. Hi. Wi, f‘i are predefined parameters in
baseline network
9



3.2 Scaling Dimensions — Depth (d) 3.2 Scaling Dimensions — Width (w)

» Scaling network depth is the most common way used by many * Scaling network width is commonly used for small size models.
ConvNets. The intuition is that deeper ConvNet can capture
richer and more complex features and generalize well on new
tasks.

* Asdiscussed in WideResNet, wider networks tend to be able to
capture more fine-grained features and are easier to train.

* However, extremely wide but shallow networks tend to have

* However, the accuracy gain of very deep network diminishes difficulties in capturing higher level features.

although several techniques, such as skip connection and batch
normalization.

v" For example, ResNet-1000 has similar accuracy as ResNet-101
even though it has much more layers
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Figure 3. Scaling Up a Baseline Model with Different Network Depth (d).
Bigger networks with larger width, depth, or resolution tend to achieve higher accuracy, but the accuracy gain quickly saturate after reaching

80%, demonstrating the limitation of single dimension scaling. Baseline network is described in Table 1. 10



3.2 Scaling Dimensions — Resolution (r)

»  With higher resolution input images, ConvNets can potentially
capture more fine-grained patterns.

v’ Starting from 224x224 in early ConvNets, modern ConvNets
tend to use 299x299 or 331x331 for better accuracy. Recently,
GPipe (Huang et al., 2018) achieves state-of-the-art ImageNet
accuracy with 480x480 resolution.

Observation 1 : Scaling up any dimension of network width,
depth, or resolution improves accuracy, but the accuracy
gain diminishes for bigger models.

v Higher resolutions, such as 600x600, are also widely used in
object detection ConvNets

81

Higher resolutions improve
accuracy, but the accuracy gain
diminishes for very high
resolutions (r = 1.0 denotes
resolution 224x224 and r = 2.5
denotes resolution 560x560).
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Figure 3. Scaling Up a Baseline Model with Different Network Depth (d).

Bigger networks with larger width, depth, or resolution tend to achieve higher accuracy, but the accuracy gain quickly saturate after reaching

80%, demonstrating the limitation of single dimension scaling. Baseline network is described in Table 1. 11



3.3 Compound Scaling

+ Empirically observe that different scaling dimensions are not
independent. (0{|, resolution0| {X|™ width2} depth7t £7})

* Intuitively, if the input image is bigger, then the network needs
more layers to increase the receptive filed and more channels to
capture more fine-grained patterns on the bigger image.

+ If we only scale network width w without changing depth (d=1.0)

oo
(3w
1

oo
—_
|

ccuracy (%)

and resolution (r=1.0), the accuracy saturates quickly.

* With deeper (d=2.0) and higher resolution (r=2.0), width scaling
achieves much better accuracy under the same FLOPS cost.

Observation 2 : In order to pursue better accuracy and efficiency, it is
critical to balance all dimensions of network width, depth, and
resolution during ConvNet scaling.

Imagg¢Net Top
%

F wowee d=1.0, 7=1.0
: d=1.0, r=1.3
- d=2.0,7=1.0
— =2.0,7=1.3

FLOPS (billions)

Figure 4. Scaling Network Width for Different Baseline Networks. Each dot in a
line denotes a model with different width coefficient (w). All baseline networks are
from Table 1. The first baseline network (d=1.0, r=1.0) has 18 convolutional layers
with resolution 224x224, while the last baseline (d=2.0, r=1.3) has 36 layers with
resolution 299x299.
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3.3 Compound Scaling

+ Compound scaling method : Use a compound coefficient ¢ to
uniformly scales network width, depth, and resolution in a

incipl :
principled way » Notably, FLOPs of a regular convolution op is proportional to
d,w? r?.
depth: d = o? wor
' s v Doubling d will double FLOPs but doubling w or r will increase
width: w = /3 3) FLOPs by four times.
resolution: r = 1,--¢ v Since convolution ops usually dominate the computation cost in
Ca-B2-~2 a2 / ConvNets, Scaling a ConvNet will approximately increase
SLarpT total FLOPs by (a - 82 - y2)%.
azlf>1ly21 «  We constraint a - % - y? =~ 2 s.t. for any new ¢, the total FLOPs

will approximate increase by 2.
* a,B,y are constants that can be determined by a small grid search.

* Intuitively, ¢ is a user-specified coefficient that controls how many
more resources are available for model scaling,

* while a,8,y specify how to assign these extra resources to network
width(w), depth(d), resolution(r) respectively.

13



MnasNet: Platform-Aware Neural Architecture Search for Mobile

4. EfficientNet Architecture (CVPR2019) - Factorized Hierarchical Search Space A€t
*  Model Scaling._ baseline network 0]l layer operator ¥, %5} Controller roamPEmodels | ¢ siner

X| 9§00z =2 paseline network 7}X|= Z10| I1Q =98t ;
« Accuracy$f FLOPS 0 #/%/5/5f Multi-object neural architecture 8

search Zg| 2t M{Z2 mobile-size baselines &5t 0|2
EfficientNetO|2} 25

» New baseline network by performing a neural architecture search '
using the AutoML MNAS framework, which optimizes both e
accuracy and efficiency (FLOPS).

Multi-objective
reward

* Optimization Goal

-3
-3

-
ACC(m) x [FLOPS(m)/T]® =
% b Mna:Net ° AmoebaNet-A
- ACC(m), FLOPS(m) : Model m2| accuracy®} FLOPS g MobileNetv2(1.4) ®
74 1 ®
- T :Target FLOPS = NASNet-A
- w = —0.07 : Accuracy?} FLOPS Z! trade-offS ZXat= 2 1
hyperparameter & 79 .
E MobileNetV2
* We optimize FLOPS rather than latency since we are not 71
targeting any specific hardware device MobileNetV1
L 50 100 150 200 14

Inference Latency (ms)



4. EfficientNet Architecture EfficientNet B1 to B7

+ EfficientNet-BO2t= network 3 : MnasNetit FAISt MBConv #&  «  Starting from the Baseline EfficientNet-B0, apply Compound
O|L}, FLOPS target (400M)0| {A{, MnasNet= L} C}4 2 FXY scaling Method to scale it up with two steps.
(MnasNett ot Search space AlE)

* Main building block : Mobile inverted Bottleneck Convolution Step 1

(MBConv), to which add squeeze-and-excitation optimization
» First fix ¢=1, assuming twice more resource available and

Table 1. EfficientNet-B0 baseline network — Each row describes do a small grid search of a,6,y by Eq. (2),(3)

a stage i with L; layers, with input resolution (Ff;, W;) and output * The best values for Efficient-B0 are a=1.2, f=1.1, y=1.15
channels C;. Notations are adopted from equation 2.

Stage Opefator Rgsolution #ChaAnnels #L%yers Step 2
: 5 H.,; X W,, C, L,, - "
‘ 7 * We then fix a,B,y as constants and scale up baseline network
1 Conv3x3 224 x 224 32 1 ; ; ; s
5 MBComy1. k3x3 11+ 112 16 1 (BO) (Eq. (3)) with different ¢ to obtain EfficientNet-B1 to B7
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x 56 40 2
5 MBCOIIVG, k3x3 28 x 28 80 3 max A(‘Curac-y (N(d. w, ?)) depth: d= (\;(“ES
6 MBConv6, k5x5 14 x 14 112 3 dw,r width: w — 3¢
7 MBConv6, k5x5 14 x 14 192 4 st N(d w.r) — Fhli(xy Y
8 MBConv6, k3x3 TxT 320 1 (d,07) 9 X ecy) resolution: r — ~%
9 Convlx1 & Pooling & FC Tx7 1280 1 Memory(A) < target memory sta-32.~2a2
FLOPS(N) < target_flops a>1.8>1,v>1

MnasNet : https://ai.googleblog.com/2018/08/mnasnet-towards-
automating-design-of.html 15



4. EfficientNet Architecture

« Baseline network : EfficientNet-BO

Table 1. EfficientNet-B0 baseline network — Each row describes
a stage ¢ with L; layers, with input resolution {H;, W) and output
channels C;. Notations are adopted from equation 2.

Stage Operator Resolution | #Channels | #Layers
7 j:_-,; f}.,; X ﬁ/',, éf,, f;,' MBConvE (k3x3)
1 Conv3x3 224 x 224 32 1
2 MBConv1, k3x3 112 x 112 16 1 MBConv3 (k5x5), SE
3 MBConvé, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x b6 40 2 T
5 MBConvé6, k3x3 28 x 28 80 3 MBConvs (k3x3)
6 MBConv6, k5x5 14 x 14 112 3 112x112x16
7 MBConv6, k5x5 14 x 14 192 4 SepConv (k3x3)
8 MBConv6, k3x3 7x 7 320 1 ——
9 Conv1x1 & Pooling & FC Tx7 1280 1 Convax3
DWConva3x3, BN, Relu
images
{a) MnasNet-A1 {d) SepConv (k3x3)

Figure 7: MnasNet-Al Architecture — (a) is a representa-
tive model selected from Table 1; (b) - (d) are a few cor-
responding layer structures. MBConv denotes mobile in-
verted bottleneck conv, DWConv denotes depthwise conv,
k3x3/k5x5 denotes kernel size, BN is batch norm, HxWxF
denotes tensor shape (height, width, depth), and x1/2/3/4
denotes the number of repeated layers within the block.
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Reviewing EfficientNet: Increasing the Accuracy and Robustness of CNNs

https://heartbeat.fritz.ai/reviewing-efficientnet-increasing-the-accuracy-and-robustness-of-cnns-6aaf411fc81d

(a) Depthwise Convolution Pointwise Convolution .

fu

Input Depthwise Depthwise Pointwise Pointwise
Data Convolution Convolution Convolution Convolution
Filters Results Filters Results

! } }
oFP o OFD
} } '

M

| T rz—

S |m||||uiﬂﬂﬂu]n'mﬂﬂﬂd

— Pointhwise Convolution (XHE 2isko]
| Convolution - channel reduction)
—_— fn R g ——
Filter Matrix Data Matrix Results Matrix Depthwise Convolution
(Pointwise Convolution Filters) (Depthwise Convelution Results) {Pointwise Conwolution Results) (_|_I7_|- I:él'%k_q Convo|uti0n)

Depthwise Convolution + Pointwise Convolution: Divides the original convolution into
two stages to significantly reduce the cost of calculation, with a minimum loss of accuracy.

Inverse Res: The original ResNet blocks consist of a layer that squeezes the channels,
then a layer that extends the channels. In this way, it links skip connections to rich channel
layers. In MBConv, however, blocks consist of a layer that first extends channels and then
compresses them, so that layers with fewer channels are skip connected.

Linear bottleneck: Uses linear activation in the last layer in each block to prevent loss of
information from ReLU.

from keras.layers import Conv2D, DepthwiseConv2D, Adddef
inverted_residual_block(x, expand=64, squeeze=16):
block = Conv2D(expand, (1,1), activation="relu’)(x)
block = DepthwiseConv2D((3,3), activation="relu’)(block)
block = Conv2D(squeeze, (1,1), activation="relu’)(block)

return Add()([block, x]) 17



Mnas & MBCblock

Mobile Neural Architecture Search Mobile Inverted Bottleneck Convolution
* Factorized Hierarchical Search Space

Residual Block Inverted Residual Block
CNN S 0[2| HolE SE8E U, HANOR 28 of8EE S0/ HEY 7|8 52l= 71X

Input Block Block Block Block Block Block Block
image 1 2 3 4 5 8 7 — output
’A-::;jf ' ,,,,,,,,,,,,,,,,,,,,,,, , ,,,,,,,,,,,,,,,,,,,,,,,, ) o Blocks are predefined Skeletons.
I | ! ;
[ Layer ... Layer Ly | . Layer F— Layer Ny Search Space Per Block i:
21 2-N, F, : 4-1 4-N, F, e  ConvOp: dconv, conv, ...
______________________________________ e e e KernelSize: 3x3, 5x5
: , . ¢ SERatio: 0.0.25, .. Figure 3: The difference between residual block [8, 30] and inverted residual. Diagonally
- T e  SkipOp: identity, pool, ... ] . . - i
; e FiterSize: hatched layers do not use non-linearities. We use thickness of each block to indicate its
3 H +>; + #ayersiN, relative number of channels. Note how classical residuals connects the layers with high
: - _ o o . Contents in blue are searched number of channels, whereas the inverted residuals connect the bottlenecks.
Figure 4: Factorized Hierarchical Search Space. Network layers are grouped into a Q5 HHE= narrow layer0l| A Q17| IHZ20], skip connection@ 2 AIRSE LSt HHE [ 71
number of predefined skeletons, called blocks, based on their input resolutions and filter layerOf| 7kX| & M=tst Z40|2H= 7|CH2} narrow layerQ| skip connection@ 2 HZ 2| Al22 £

sizes. Each block contains a variable number of repeated identical layers where only the
first layer has stride 2 if input/output resolutions are different but all other layers have stride Bottleneck Residual Block

1. For each block, we search for the operations and connections for a single layer and the Add | conv1x1, Linear |
number of layers N, then .the same layer is repeated N times (e.g., Layer 4.1-1 to 4-N4 are Input | Operator | Output '
the same). Layers from different blocks (e.g., Layer 2-1 and 4-1) can be different. conv 1x1, Linear
hxwxk Ix1 conv2d , ReLU6 h x w x (tk) I D;i:e 32:.3;‘ .
_ _ _ . _ h stride=2, Relul
2t 2222 sub search space= E5f MO|5t SUSH H0|0{S2 PAE N YOO Ct2up 22 = A ,.11 X 3 x th 3x3_ dwise s=s, ReLUG —hx E % (Hf) e 22 rers _
£2 1245l0] sub search spaceE ZH = x = xtk linear 1x1 conv2d T x=xk | T T
. C‘on\{olutional ops ConvOp: regular conv (conv), depthwise conv (dconv), and mo Table 1: Bortleneck residual block transforming from & [ Conv 1x1, Relué ‘
bile mverlted bottleneclk o ! to k' channels, with stride s. and expansion factor .
e Convolutional kernel size Kernel Size: 3x3, 5x5. =
¢ Squeeze-and-excitation ratio SERatio: 0, 0.25. . . Al = Cmput > _input_>
e Skip ops SkipOp: pooling, identity residual, or no skip. Search A|gOf‘It|’]I’T’I2 4slets At expansion factort : S5 S0 t2F X20| =Y Stride=1 block Stride=2 block
 OQutput filter size F3. 18

e Number of layers per block Ni.



5.1 Experiment: Scaling Up MobileNets and ResNet

» Apply the scaling method to MobileNet and ResNet

Table 3. Scaling Up MobileNets and ResNet,

Model | FLOPS  Top-1 Acc.
Baseline MobileNetV1 (Howard et al., 2017) | 0.6B 70.6%
Scale MobileNetV1 by width (w=2) 2.2B 74.2%
Scale MobileNetV1 by resolution (r=2) 2.2B 72.7%
compound scale (d=1.4, w=1.2, r=1.3) 2.3B 75.6%
Baseline MobileNetV2 (Sandler et al., 2018) | 0.3B 72.0%
Scale MobileNetV2 by depth (d=4) 1.2B 76.8%
Scale MobileNetV2 by width (w=2) 1.1B 76.4%
Scale MobileNetV2 by resolution (r=2) 1.2B 74.8%
MobileNetV2 compound scale 1.3B 77.4%
Baseline ResNet-50 (He et al., 2016) | 4.1B 76.0%
Scale ResNet-50 by depth (d=4) 16.2B 78.1%
Scale ResNet-50 by width (w=2) 14.7B 77.7%
Scale ResNet-50 by resolution (r=2) 16.4B 77.5%
ResNet-50 compound scale 16.7B 78.8%




ImageNet Results
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Figure 1. Model Size vs. ImageNet Accuracy. All numbers are for single-crop, Figure 5. FLOPS vs. ImageNet Accuracy — Similar to Figure 1 except it
single-model. In particular, EfficientNet-B7 achieves new state-of-the-art 84.3% compares FLOPS rather than model size.

top-1 accuracy but being 8.4x smaller and 6.1x faster than GPipe. EfficientNet-
B1 is 7.6x smaller and 5.7x faster than ResNet-152.



s Simulation Settings

*  RMSProp optimizer with decay 0.9 and momentum

5.2 ImageNet Results for Efficient-B0 to B7 0.9; batch norm momentum 0.99; weight decay 1e-5;
Table 2. EfficientNet Performance Results on ImageNet (Russakovsky et al., 2015). All EfficientNet models are scaled from our initial Ieaming rate 0.256 that decays by 0.97 every
baseline EfficientNet-BO using different compound coefficient ¢ in Equation 3. ConvNets with similar top-1/top-5 accuracy are grouped 2.4 epochs
together for efficiency comparison. Our scaled EfficientNet models consistently reduce parameters and FLOPS by an order of magnitude . . L
(up to 8.4x parameter reduction and up to 16x FLOPS reduction) than existing ConvNets. . SILU(SWISh-1 ) activation, AutoAugment, and

stochastic depth with survival probability 0.8
Model | Top-1 Acc. Top-5 Acc. | #Params Ratio-to-EfficientNet | #FLOPs  Ratio-to-EfficientNet ) )
EfficientNet-B0 1% 93.3% sAM x 0.39B I * Dropout ratio from 0.2 for EffcientNet-B0O to 0.5 for B7
ResNet-50 (He et al., 2016) 76.0% 93.0% 26M 4.9x 4.1B 11x . .
DenseNet-169 (Huang et al., 2017) 762%  932% | 14M 26x 358 8.9x * Reserve 25K randomly picked images from the
EfficientNet-B1 79.1% 94.4% 7.8M Ix 0.70B 1x training set as a minival set, and perform early
ResNet-152 (He et al., 2016) 71.8% 93.8% 60M 7.6x 11B 16x stopping on this minival
DenseNet-264 (Huang et al., 2017) T19% 93.9% 34M 4.3x 6.0B 8.6x .
Tnception-v3 (Szegedy et al., 2016) 78.8% 94.4% 24M 3.0x 5.7B 8.1x « Then evaluate the early-stopped checkpoint on the
Kception (Chollet, 2017) 719.0% M3% 23M 3.0x 848 12x original validation set to report the final validation
EfficientNet-B2 80.1% 94.9% 92M 1x 1.0B 1x
Inception-v4 (Szegedy et al., 2017) 80.0% 95.0% 48M 5.2x 13B 13x accuracy.
Inception-resnet-v2 (Szegedy et al., 2017) 80.1% 95.1% 56M 6.1x 13B 13x
EfficientNet-B3 81.6% 95.7% 12M 1x 1.5B 1x . P’
ResNeXt-101 (Xie et al., 2017) 80.9% 95.6% $4M 7.0 2B 18x BERT, GPT, ViT — GeLU At&
Po]yNet (Zhang et al., 20 17) 81.3% 95.8% 92M TIx 35B 19x ) —T Gaussian Error Linear Unit (GELU)
35 |
EfficientNet-B4 82.9% 96.4% 19M 1x 4.2B 1x of (=Rl ’
SENet (Hu et al., 2018) 82.7% 96.2% 146M T7x 42B 10x 25 s
NASNet-A (Zoph et al,, 2018) 82.7% 96.2% 8OM 4.7x 24B 5.7x : 4
AmoebaNet-A (Real et al., 2019) 82.8% 96.1% 87/M 4.6x 23B 5.5x = ,
PNASNet (Liv et al., 2018) 82.9% 96.2% 86M 4.5x 23B 6.0x )
EfficientNet-B5 83.6% 96.7% 30M 1x 9.9B 1x 02 ,
AmoebaNet-C (Cubuk et al., 2019) 83.5% 96.5% 155M 5.2x 41B 4.1x I
EfficientNet-B6 | 84.0% 968% | 43M 1x | 198 Ix B L T e S m
Zn
EfficientNet-B7 $4.3% 97.0% 66M 1x 7B 1x '
GPipe (Huang et al., 2018) 84.3% 97.0% 557M 8.4x -

Modern Activation : https://towardsdatascience.com/activation-
functions-you-might-have-missed-79d72fc080a5 21

We omit ensemble and multi-crop models (Hu et al., 2018), or models pretrained on 3.5B Instagram images (Mahajan et al., 2018).



5.2 Inference Latency Comparison

Table 4. Inference Latency Comparison — Latency is measured
with batch size 1 on a single core of Intel Xeon CPU ES5-2690.

Acc. @ Latency H Acc. @ Latency
ResNet-152 77.8% @ 0.554s GPipe 84.3% @ 19.0s
EfficientNet-B1 78.8% @ 0.098s || EfficientNet-B7  84.4% @ 3.1s
Speedup 5.7x Speedup 6.1x

22



5.3 Experiment: Transfer Learning Results

Table 5. EfficientNet Performance Results on Transfer Learning Datasets. Our scaled EfficientNet models achieve new state-of-the-
art accuracy for 5 out of 8 datasets, with 9.6x fewer parameters on average.

Comparison to best public-available results Comparison to best reported results
Model Acc.  #Param Our Model Acc.  #Param(ratio) || Model Acc.  #Param Our Model Acc.  #Paramiratio)

CIFAR-10 NASNet-A  98.0%  8M  EfficientNet-BO 98.1% 4M (21x) tGpipe 99.0% 556M  EfficientNet-B7 989%  64M (8.7x)
CIFAR-100 NASNet-A  875%  8M  EfficientNet-BO 88.1% 4M (21x) Gpipe 913%  556M  EfficientNet-B7 91.7%  64M (8.7x)
Birdsnap Inception-v4 81.8%  41M  EfficientNet-B5 82.0%  28M (1.5x) GPipe 83.6%  556M  EfficientNet-B7 84.3%  64M (8.7x)
Stanford Cars Inception-v4 934%  41M  EfficientNet-B3  93.6%  10M (4.1x) ‘DAT 94.8% - EfficientNet-B7  94.7% -
Flowers Inception-v4  985%  41M  EfficientNet-B5 085%  28M (1.5x%) DAT  97.7% - EfficientNet-B7 98.8% -
FGVC Aircraft Inception-v4 909%  41M  EfficientNet-B3 90.7%  10M (4.1x} DAT  929% - EfficientNet-B7 92.9% -
Oxford-IIIT Pets | ResNet-152 945%  58M  EfficientNet-B4 04.8%  17M (5.6x) GPipe 959%  556M  EfficientNet-B6  954%  41M (14x)
Food-101 Inception-v4 90.8%  41M  EfficientNet-B4 91.5% 17 2.4x) GPipe 93.0%  556M  EfficientNet-B7 93.0%  o4M (8.7x)
Geo-Mean I @41 | (9.6%)

TGPipe (Huang et al,, 2018) trains giant models with specialized pipeline parallelism library.
DAT denotes domain adaptive transfer leaming (Ngiam et al., 2018), Here we only compare ImageNet-based transfer learning results.
Transfer accuracy and #params for NASNet (Zoph et al,, 2018), Inception-v4 (Szegedy et al.,, 2017}, ResNet-152 (He et al., 2016} are from (Komblith et al., 2019).

Table 6. Transfer Learning Datasets.

Dataset | Train Size Test Size #Classes
CIFAR-10 (Krizhevsky & Hinton, 2009) 50,000 10,000 10
CIFAR-100 (Krizhevsky & Hinton, 2009) 50,000 10,000 100
Birdsnap (Berg et al., 2014) 47,386 2,443 500
Stanford Cars (Krause et al., 2013) 8,144 8,041 196
Flowers (Nilsback & Zisserman, 2008) 2,040 6.149 102
FGVC Aircraft (Maji et al., 2013) 6,667 3,333 100
Oxford-IIIT Pets (Parkhi et al., 2012) 3,680 3,369 37
Food-101 (Bossard et al., 2014) 75,750 25,250 101
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5.3 Experiment: Transfer Learning Results
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Figure 6. Model Parameters vs. Transfer Learning Accuracy — All models are pretrained on
ImageNet and finetuned on new datasets.
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6. Discussion

» Compare the ImageNet performance of different
scaling method for the same EfficientNet-BO
baseline network

scale by width
==x== scale by depth
—=:= scale by resolution
—e— compound scaling
75 T T T
0 1 2 3 e 5
FLOPS (Billions)

ImageNet Top-1 Accuracy(%)

Figure 8. Scaling Up EfficientNet-B0 with Different Methods.

Table 7. Scaled Models Used in Figure 7.

Model

‘ FLOPS  Top-1 Acc.

Baseline model (EfficientNet-B0) ‘ 0.4B 77.3%
Scale model by depth (d=4) 1.8B 79.0%
Scale model by width (w=2) 1.8B 78.9%
Scale model by resolution (r=2) 1.9B 79.1%
Compound Scale (d=1.4, w=1.2, r=1.3) 1.8B 81.1%

bakeshop

maze

» The model with compound scaling tends to focus on more relevant
regions with more object details than other models

baseline model deeper (d=4)

original image wider (w=2)

|
4

.‘LH et .. ‘“

A
e M

pN =

SO | &

e B
o] &2

higher resolution (r=2)

compound scaling

-2

Figure 7. Class Activation Map (CAM) (Zhou et al., 2016) for Models with different scaling methods-
Our compound scaling method allows the scaled model (last column) to focus on more relevant regions

with more object details. Model details are in Table 7.
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EffieicntNet Pytorch

https://github.com/lukemelas/EfficientNet-PyTorch
Colab : https://deep-learning-study.tistory.com/563

cd drive/MyDrive/Colab Notebooks/data
from google.colab import drive
drive.mount(/content/drive’)

import torch

import torch.nn as nn

import torch.nn.functional as F

from torchsummary import summary
from torch import optim

# dataset and transformation

from torchvision import datasets

import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision import models

import os

# display images

from torchvision import utils
import matplotlib.pyplot as plt
Y%matplotlib inline

# utils

import numpy as np

from torchsummary import summary
import time

import copy

torchvision I§7|X| STL10 dataset 0| &
(107H 2}, train dataset 500071}, test dataset 800071 =2 &= L|C})

# specify path to data
path2data = '/content/efficientnet/MyDrive/data’

# if not exists the path, make the directory
if not os.path.exists(path2data):
os.mkdir(path2data)

# load dataset

train_ds = datasets.STL10(path2data, split="train', download=True,
transform=transforms.ToTensor())

val_ds = datasets.STL10(path2data, split="test', download=True,
transform=transforms.ToTensor())

print(len(train_ds))
print(len(val_ds))

# define transformation

transformation = transforms.Compose([
transforms.ToTensor(),
transforms.Resize(224)

)

# apply transformation to dataset
train_ds.transform = transformation
val_ds.transform = transformation

# make dataloade
train_dl = DataLoader(train_ds, batch_size=32, shuffle=True)
val_dl = DatalLoader(val_ds, batch_size=32, shuffle=True)
26



Fo. (W)

X U Fy, () [ —— X
o 1x IESH: e 7Y
[1] https://github.com/zsef123/EfficientNets-PyTorch/blob/master/models/effnet.py — | " Freare €) "H —
[2] https://github.com/katsura-jp/efficientnet-pytorch/blob/master/model/efficientnet.py W W W
c’ IS c
Swish activation function SE block (squeeze-and-excitation optimization)
# Swish activation function # SE Block
class Swish(nn.Module): class SEBlock(nn.Module):
def __init_ (self): def _init__ (self, in_channels, r=4):
super().__init_ () super().__init_ ()
self.sigmoid = nn.Sigmoid() 1 H W
self.squeeze = nn.AdaptiveAvgPool2d((1,1)) ». — F. (u.) = ue(i,
def forward(self, x): self.excitation = nn.Sequential( ‘ rq (te) HxW ; 3_21 «(1,7)
return x * self.sigmoid(x) gr\:\;il_slrr:(e)ar(ln_channels, in_channels *r), 8§ = Fuy (2, W) = o(Wad(W12))
# check nn.Linear(in_channels * r, in_channels),
if _name__=='_ main__" nn.Sigmoid()
x = torch.randn(3, 3, 224, 224) )
model = Swish()
output = model(x) def forward(self, x):
print(‘output size:', output.size()) x = self.squeeze(x) # check :3x56x1x1 (17x17x -> 1x1)
X = x.view(x.size(0), -1) # check : 3x56
x = self.excitation(x) # check : 3x56
x = X.view(x.size(0), x.size(1), 1, 1) # check : 3x56x1x1
return x
# check
if _name__==' main__"
x = torch.randn(3, 56, 17, 17)
model = SEBIlock(x.size(1)) #in_channels = 56 (x.size(1))
output = model(x)
print('output size:', output.size())
) 27




ReLU6
f(x)=min(max(0,x),6)

activationOl Eipaie]
£ Btot= AS ‘1.*0t
°'Hr ReLU01| A A5

Z o2 A0l

Swish

f(x)=x * sigmoid(x)

6

f(x) = x = sigmoid(x)
=x*(1+ e !

Google Brain TeamOj| A X|Qf
ot activation function2 £ 7Y
HE2 49| challenging
dataset0]| CHSHA| ReLUELt
M50/ o £28 ol
ReLU2 SAI6HA 274 RelLU
2 Swish unit@ 2 CHA|517| 4
SLE AME[E0| HO| =Ct=
THEO| US.

Activation Ft. [Z %] http://ai-hub.kr/post/111/

H-Swish
8 1 : swi:sh vs h-sv}!ish 1: ; IHE E2 M2 swishQt
T swish | 7o Hiz 3Rt
sl h-swish | . ] sigmoidE RelLUZ [}
Al |57 | T20]| HAH|
3. g o Ol X_I%qgcl.
2L
1k ...........
0 i oo

How to use them in deep neural networks?

= Tanh 2t sigmoid= vanishing gradient problemS SYTL|CH HEHYI 2| 0|7 LHLE HE
output layer2| activation2Z ¢t A HA|2,

s UTH2 RelUZ A|EGHHL. RelU= HEIE T4 9E d5 0|14 28 ot= UL BHef E7to] ot
£0| ZTH=|2CH Dying ReLUS 2| 4513 LeakyRelUS AETHH|R.

« UEZ 30 batchnorm layer7t 2/CHE CNN-BachNorm-Act =22 T HEL|CL Y8 = M7 E2
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Squeeze-and-Excitation Blocks

X U E‘X( W)

F,, () ~ 0 ——— -]]
/ 1x1xC 1x1=xC

SENet(Squeeze and excitation networks)

scaie ( )

C’ C

Figure 1: A Squeeze-and-Excitation block.

Y e —

= Shrinking feature maps €
RW*hXcz through spatial
dimensions (w X h)

¢ Global distribution of channel-
wise responses

= Learning W € R%*¢ to
explicitly model channel-
association

* Gating mechanism to produce
channel-wise weights

o= RelLU &, W, It W= 22t Fully
connected layer

Reduction ratio r € SoljAl W12| LLE £

ZOICH= 7491, 2|1 W20H|A] CHA| 11II1”“9-|
& CZ S7IAIZ. 2tof feature mapQ| 47}
CIH(Z10il41 87H)0| 2 r7t0] 42+H Otz 12
X2 FC layerZt 47[A &

X

4 A

* Reweighting the feature maps
€ RWxhxcz

[EX] https://jayhey.github.io/deep%20learning/2018/07/18/SENet/

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu, "Squeeze-and-Excitation Networks," https://arxiv.org/abs/1709.01507, 2017

» Our goal is to improve the representational power of a
network by explicitly modelling the interdependencies
between the channels of its convolutional features.

SE block : Zt feature map0i| CHgH MX| HEE Q6=
Squeeze operation, 0|2 E5l Zt feature map2 ELEE A7
2UsliF= excitation operation

Squeeze : Global Information Embedding

v' GAP(Global average pooling) AlE5tH 52 HE F=

wazzucu

i=1 j=1

Ze = qu (uc)

Excitation : Adaptive Recalibration

v 2 7t °|=M(channel-wise dependencies)2 H|AHo1A
=20 A= Fully connected layerQ} H|A3 St&E XX
O = 7IHSA O|F ALt

rir o

Zd

t

o

s = Fep (2, W) = a(W26(W12))

29



. . [EX] https://towardsdatascience.com/review-stochastic-depth-image-classification-
Deep Networks with Stochastic Depth 46225807 f4a

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, Kilian Weinberger, "Deep Networks with Stochastic Depth," https://arxiv.org/abs/1603.09382, 2016

Stochastic Depth - - 08 07 06 05

» Deep Network : vanishing gradient, diminishing feature (Forward A| (24 I
H multiplication, convolution computation 2 BI23tHA| Feature7t &4 -

* By using Stochastic Depth, the network is shorten during training, i.e. a ><
subset of layers is randomly dropped and bypass them with the identity
function. And a full network is used during testing/inference. By this I

mean:
“— oa_a H, |' Hy "X Hy oa Hy X@{J»
2) Test error is improved significantly as well

v' depth& Z0A{ training £2| forward propagation ! gradient Fig. 2. The linear decay of p; illustrated on a ResNet with stochastic depth for po=1
computation?| chaing ZtAA|Z. and pr = 0.5. Conceptually, we treat the input to the first ResBlock as Hg, which is
v’ stochastic depth2| AL, implicit ensembleZ & 4= US. (network0f| Cf  always active.
off CtE depthE ALE)

Input

1) Training time is reduced substantially

IJIo

Training Testing
* Bernoulli random variable b;~Bernoulli(p;) €{0,1}

est time J__
0" O|0H JHOHII 0:|7|01|k| glp IHl_'mH E1|0|0'|°| bl Mini-batch 1 A ‘“L—l)&\ At test ti

st
1 active, O}L|™ inactive MinTbateh 2 %ﬁﬂ%

« layer |1 O] "survival" 3}= probability p; = Pr(b;=1)=
1--(1-py) SRR Iall I N1 3

[ A subset of layers are dropped at each mini-batch ]

H™ = ReLU(p)fe (H/ 5 We) + HJY!

All layers are on, but outputs of f; are down weighted by
their corresponding survival probabilities.

. py=1,0(K/Z 2[0[0f LY p, = 0.5
Hy = ReLU(p(Hf_I) +id(H-1))

@‘Bé_rnoum random variable ]
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Pooling, FC
Tx7x320

MBConv6 (k3x3)
TxTx160
MBConv6 (k5x5), SE
14x14%112
MBConv6 (k3x3), SE

14x14x80

MBConv6 (k3x3)

28x28x40

MBConv3 (k5x5), SE

56X56x24
MBConv6 (k3x3)
112x112x16

SepConv (k3x3)

T12x112x32

1 220024x3
images
(a) MnasNet-A1

Convix1, BN
HxWx3F

SE (Pooling, FC, Relu,
FC, Sigmoid, MUL)

HxWx3F
DWConv5x5, BN, Relu

HxWx3F
Conv1x1, BN, Relu

(b) MBConv3 (k5x5)

Convix1, BN
DWConv3x3, BN, Relu

Conv1ix1, BN, Relu

(c) MBConv6 (k3x3)

HxWxF

HxWxF

DWConv3x3, BN, Relu

(d) SepConv (k3x3)

Figure 7: MnasNet-A1 Architecture — (a) is a representa-
tive model selected from Table 1; (b) - (d) are a few cor-
responding layer structures. MBConv denotes mobile in-
verted bottleneck conv, DWConyv denotes depthwise conv,
k3x3/k5x5 denotes kernel size, BN is batch norm, HxWxF
denotes tensor shape (height, width, depth), and x1,/2/3/4
denotes the number of repeated layers within the block.

MBConv 22fA HO| : k& A| stochastic depth, expand=6, 37| 2{0]0{

class MBConv(nn.Module):
expand =6
def __init__ (self, in_channels, out_channels, kernel_size, stride=1, se_scale=4, p=0.5):
super().__init_ ()
# first MBConv is not using stochastic depth
self.p = torch.tensor(p).float() if (in_channels == out_channels) else torch.tensor(1).float()

self.residual = nn.Sequential(
nn.Conv2d(in_channels, in_channels * MBConv.expand, 1, stride=stride, padding=0, bias=False),
nn.BatchNorm2d(in_channels * MBConv.expand, momentum=0.99, eps=1e-3),
Swish(),
nn.Conv2d(in_channels * MBConv.expand, in_channels * MBConv.expand, kernel_size=kernel_size,

stride=1, padding=kernel_size//2, bias=False, groups=in_channels*MBConv.expand),

nn.BatchNorm2d(in_channels * MBConv.expand, momentum=0.99, eps=1e-3),
Swish()

)

self.se = SEBlock(in_channels * MBConv.expand, se_scale)

self.project = nn.Sequential(
nn.Conv2d(in_channels*MBConv.expand, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_channels, momentum=0.99, eps=1e-3)

)

self.shortcut = (stride == 1) and (in_channels == out_channels)

Expansion & Depthwise Convolution
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MBConv Z2:2i|A 9|

def forward(self, x):
# stochastic depth
if self.training:
if not torch.bernoulli(self.p):
return x

X_shortcut = x
x_residual = self.residual(x)
x_se = self.se(x_residual)

X = Xx_se * x_residual
x = self.project(x)

if self.shortcut:
x= x_shortcut + x

return x
# check
if _name__ =='_ main__"

x = torch.randn(3, 16, 24, 24)

model = MBConv(x.size(1), x.size(1), 3, stride=1, p=1)
model.train()

output = model(x)

X = (output == x)

print(‘output size:', output.size(), 'Stochastic depth:', x[1,0,0,0])

SepConv Z2iA HQ| : expand=1, 27| layer

class SepConv(nn.Module):
expand = 1
def __init__ (self, in_channels, out_channels, kernel_size, stride=1, se_scale=4, p=0.5):

super().__init_ ()
# first SepConv is not using stochastic depth
self.p = torch.tensor(p).float() if (in_channels == out_channels) else torch.tensor(1).float()

self.residual = nn.Sequential(
nn.Conv2d(in_channels * SepConv.expand, in_channels * SepConv.expand, kernel_size=kernel_size,
stride=1, padding=kernel_size//2, bias=False, groups=in_channels*SepConv.expand),
nn.BatchNorm2d(in_channels * SepConv.expand, momentum=0.99, eps=1e-3),
Swish()

)

self.se = SEBIlock(in_channels * SepConv.expand, se_scale)
self.project = nn.Sequential(

nn.Conv2d(in_channels*SepConv.expand, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_channels, momentum=0.99, eps=1e-3)

)

self.shortcut = (stride == 1) and (in_channels == out_channels)
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SepConv ZeiA MO

EfficientNet H9|

def forward(self, x):
# stochastic depth
if self.training:
if not torch.bernoulli(self.p):
return x

X_shortcut = x
x_residual = self.residual(x)
x_se = self.se(x_residual)

X = Xx_se * x_residual
x = self.project(x)

if self.shortcut:
x= x_shortcut + x

return x
# check
if _name__=='__main__"

x = torch.randn(3, 16, 24, 24)

model = SepConv(x.size(1), x.size(1), 3, stride=1, p=1)
model.train()

output = model(x)

# stochastic depth check

x = (output == x)

print(‘output size:', output.size(), 'Stochastic depth:', x[1,0,0,0])

class EfficientNet(nn.Module):
def __init_ (self, num_classes=10, width_coef=1., depth_coef=1., scale=1., dropout=0.2, se_scale=4,
stochastic_depth=False, p=0.5):
super().__init_ ()
channels = [32, 16, 24, 40, 80, 112, 192, 320, 1280]
repeats =[1, 2, 2, 3, 3, 4, 1]
strides =[1,2,2,2,1,2,1]
kernel_size =[3, 3, 5, 3, 5, 5, 3]
depth = depth_coef
width = width_coef

channels = [int(x*width) for x in channels]
repeats = [int(x*depth) for x in repeats]

# stochastic depth
if stochastic_depth:

selfp=p

self.step = (1 - 0.5)/ (sum(repeats) - 1)
else:

self.p =1

self.step=0
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| 220x224x3
112x112x32

112x112x16

MBConvé, 3x3

56x56x24

_MBConvS. 3x3

EfficientNet H9]

# efficient net self.stage9 = nn.Sequential( ]
self.upsample = nn.Upsample(scale_factor=scale, mode='bilinear’, nn.Conv2d(channels[7], channels[8], 1, stride=1, bias=False), [ wecome,sxs |
align_corners=False) nn.BatchNorm2d(channels[8], momentum=0.99, eps=1e-3), '

Swish() ; 28x28x40

self.stage1 = nn.Sequential( ) [ MBConv6, 5x5 |
nn.Conv2d(3, channels[0],3, stride=2, padding=1, bias=False), 28x28x40
nn.BatchNorm2d(channels[0], momentum=0.99, eps=1e-3) self.avgpool = nn.AdaptiveAvgPool2d((1,1))
) self.dropout = nn.Dropout(p=dropout) 26:26x80

MBConv6, 3x3

28x28x80

self.linear = nn.Linear(channels[8], num_classes)
self.stage2 = self._make_Block(SepConv, repeats[0], channels[0], channels[1],

kernel_size[0], strides[0], se_scale) def forward(self, x):
x = self.upsample(x) 28x28x80
self.stage3 = self._make_Block(MBConv, repeats[1], channels[1], channels[2], x = self.stage1(x) ‘ MBConvs, 5x5
kernel_size[1], strides[1], se_scale) x = self.stage2(x) [ 1axiaxnz
x = self.stage3(x) I MBConve, 5x5
self.stage4 = self._make_Block(MBConv, repeats[2], channels[2], channels[3], x = self.stage4(x) } taxtaxiiz
kernel_size[2], strides[2], se_scale) x = self.stage5(x) l MBConve, 5x5 |
x = self.stage6(x) [ oz
self.stage5 = self._make_Block(MBConv, repeats[3], channels[3], channels[4], x = self.stage7(x) | P |
kernel_size[3], strides[3], se_scale) x = self.stage8(x) I ?'xmgz
x = self.stage9(x)
self.stage6 = self._make_Block(MBConv, repeats[4], channels[4], channels[5], x = self.avgpool(x) | mBconve, 55
kernel_size[4], strides[4], se_scale) X = x.view(x.size(0), -1) N
x = self.dropout(x) ‘ MECanve, Bxb
self.stage7 = self._make_Block(MBConv, repeats[5], channels[5], channels[6], x = self.linear(x) y Txx192
kernel_size[5], strides[5], se_scale) return x ‘ MBCOTB- 5x5
TxTx192
self.stage8 = self._make_Block(MBConv, repeats[6], channels[6], channels[7],
kernel_size[6], strides[6], se_scale) § 7X7x320
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EfficientNet H9]

def _make_Block(self, block, repeats, in_channels, out_channels, kernel_size, stride,
se_scale):
strides = [stride] + [1] * (repeats - 1)
layers =]
for stride in strides:
layers.append(block(in_channels, out_channels, kernel_size, stride, se_scale,
self.p))
in_channels = out_channels
self.p -= self.step

return nn.Sequential(*layers)

def efficientnet_bO(num_classes=10):
return EfficientNet(num_classes=num_classes, width_coef=1.0, depth_coef=1.0,
scale=1.0,dropout=0.2, se_scale=4)

def efficientnet_b1(num_classes=10):
return EfficientNet(num_classes=num_classes, width_coef=1.0, depth_coef=1.1
scale=240/224, dropout=0.2, se_scale=4)

def efficientnet_b2(num_classes=10):
return EfficientNet(num_classes=num_classes, width_coef=1.1, depth_coef=1.2,
scale=260/224., dropout=0.3, se_scale=4)

def efficientnet_b3(num_classes=10):
return EfficientNet(num_classes=num_classes, width_coef=1.2, depth_coef=1.4,
scale=300/224, dropout=0.3, se_scale=4)

def efficientnet_b4(num_classes=10):
return EfficientNet(num_classes=num_classes, width_coef=1.4,
depth_coef=1.8, scale=380/224, dropout=0.4, se_scale=4)

def efficientnet_b5(num_classes=10):
return EfficientNet(num_classes=num_classes, width_coef=1.6,
depth_coef=2.2, scale=456/224, dropout=0.4, se_scale=4)

def efficientnet_b6(num_classes=10):
return EfficientNet(num_classes=num_classes, width_coef=1.8,
depth_coef=2.6, scale=528/224, dropout=0.5, se_scale=4)

def efficientnet_b7(num_classes=10):
return EfficientNet(num_classes=num_classes, width_coef=2.0,
depth_coef=3.1, scale=600/224, dropout=0.5, se_scale=4)

# check

if _name__==' main__"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x = torch.randn(3, 3, 224, 224).to(device)
model = efficientnet_b0().to(device)
output = model(x)
print(‘output size:', output.size())

| 220x224x3
Conv3x3
112x112x32

112x112x16

MBConvé, 3x3

56x56x24

MBConvé, 3x3

56x56x24

MBConv6, 5x5 |
; 28x28x40

MBConv6, 5x5 |

28x28x40

MBConv6, 3x3

28x28x80

MBConv6, 3x3

28x28x80

MBConv6, 3x3

28x28x80

MBConv6, 5x5

y 14x1axiiz

MBConvs, 5x5
; 14x14x112

MBConv6, 5x5 |

‘ 14x14x112

MBConv6, 5x5 |

+ 7x7x192

MBConv6, 5x5

} 7x7x192

MBConvé, 5x5

¢ 7x7x192

MBConv6, 5x5

4 7x7x192

MBConv6, 3x3
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Mingxing Tan, Quoc V. Le, “EfficientNetV2: Smaller Models and Faster
Training,” arXiv:2104.00298, 2021 (Google Research Brain Team) (ICML'21)

Abstract

» EfficientNetV2, a new family of convolutional networks that have
faster training speed and better parameter efficiency than
previous models.

* Use a combination of training-aware neural architecture search
and scaling, to jointly optimize training speed and parameter
efficiency.

* The models were searched from the search space enriched with new
ops such as Fused-MBConv.

» Our experiments show that EfficientNetV2 models train 4x faster
than SOTA models while being up to 6.8x smaller.

rr

https://github.com/google/automl/tree/master/efficientnetv2

Breakpoint

* Neural architecture search (NAS): Use of random
search/reinforcement learning to make optimal model design choices
and find hyperparameters.

+ Scaling strategies: Guidelines on how to upscale small networks into
bigger ones effectively, e.g. compound scaling rule of EfficientNet.

+ Training strategies: e.g. new regularization methods, guidelines for
training efficiency.

* Progressive learning: Accelerating training by progressively
increasing the image size and adaptively adjusts regularization (e.g.
dropout and augmentation) along with image size

+ Various types of convolutions and building blocks: e.g. depthwise
conv, depthwise-separable conv, squeeze and excitation(SE), MB
Conv, Fused-MB Conv.

0| 37}X|Z siZASH7| 2I5hA progressive learning?} fused-MBConv, non-uniform scaling F2F2 AJl gt
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_ EffNetV2-XL(21K)
R71

861 s

g mfm——————TTT NFNet-F4

2 -~ F3 _

< _e1” WEELHREHY Review of EfficientNet

‘c'_:. g5 ,"FZ Ethet;B?(repnz)

2 lambdanet Botnet i » Optimized for FLOPs and parameter efficiency.

2 ResNetRS | _—===" S

gl e » Leverage NAS to search for the baseline EfficientNet-BO model that
= e has better trade-off on accuracy and FLOPs.

“B5
7’
/' * The baseline model is then scaled up with a simple compound scaling
= 134' strategy to obtain a family of models B1-B7.
1 2 3 4 5 6 , . , L , L
Training time (TPU days) * In this paper, we aim to improve the training speed while maintaining
(a) Training efficiency. the parameter efficiency.
EfficientNet ResNet-RS  DeiT/ViT  EfficientNetV2
(2019) (2021) (2021) (ours)
Top-1 Acc. 84.3% 84.0% 83.1% 83.9%
Parameters 43M 164M 86M 24M

(b) Parameter efficiency.

Figure 1. ImageNet ILSVRC2012 top-1 Accuracy vs. Training Time and
Parameters — Models tagged with 21k are pretrained on ImageNet21k, and others
are directly trained on ImageNet ILSVRC2012. Training time is measured with 32
TPU cores. All EfficientNetV2 models are trained with progressive learning. Our
EfficientNetV2 trains 5x - 11x faster than others, while using up to 6.8x fewer

37
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EfficientNetV2 (Smaller Models and Faster Training)

3.2 Understanding Training Efficiency

(1) Training with very large image sizes is slow

Progressive learning with adaptive regularizationAe=1IE ilgle]

training by progressively increasing the image size by adding stronger

regularization

+ Image size plays an important role in training efficiency. Traininggt [f, 0|0|
X2l 37|18 HIHRR FIt — ofg £ E H=7| o7 flofl AFZoHX|T Fetz
7t A2 (U™ O|O1X] 27|04 [t St WratE ArZol| M=)

* Smaller images : Lead to smaller network capacity, thus weaker
regularization (augment & 2A|)

* Larger image size : Lead to larger capacity, thus strong regularization ;
more vulnerable to overfitting (augment 2t& =/ L= dropout =4|)

Table 5. ImageNet top-1 accuracy. We use RandAug (Cubuk et al.,
2020), and report mean and stdev for 3 runs.
Size=128  Size=192  Size=300
RandAug magnitude=5  78.3 Lo.16  81.2 £0.06 82.5 £0.05

RandAug magnitude=10  78.0 £0.08 81.6 L0.08 82.7 +0.08
RandAug magnitude=15 77.7 +0.15  81.5 +0.05 83.2 ~0.09

s
45
epoch=10

Figure 4. Training process in our improved progressive learning — It
starts with small image size and weak regularization (epoch=1), and
then gradually increase the learning difficulty with larger image sizes
and stronger regularization: larger dropout rate, RandAugment
magnitude, and mixup ratio (e.g., epoch=300).
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EfficientNetV2 (Smaller Models and Faster Training)

(1) Training with very large image sizes is slow

Progressive learning with adaptive regularization

Simulation setup for progressive learning

- Target image size S, with a list of regularization magnitude @, = {¢¥} » Divide the training process into 4 stages with about 87 epochs per stage

where k represents a type of regularization (dropout, randaug, mixup) * min (first stage) and max (last stage)
Algorithm 1 Progressive learning with adaptive regularization. Table 6-%81;‘3581\’6 trzhving settings for EfficientNetV2.
\n
Input: Initial image size Sq and regularization {&§ }. \n:in S o | min Mmax min L e
Input: Final image size S, and regularization {¢F}. -
Input: Number of total training steps N and stages M. Image Size 128 300 | 128 380 | 128 380
fori = 0to M — 1do Li Rand Augment 5 15 5 20 5 25
. inear -
Image size: S; < So + (S. — Sg) - -2 ; ) Mixup alpha 0 0 0 0.2 0 0.4
s ( )i interpolation Dropoutrate | 0.1 03 | 0.1 04 | 0.1 05

Regularization: R; « {¢} = o6 + (¢ — ¢6) - 71}
Train the model for % steps with S; and R;.
end for

3types of regularization

* Dropout : network-level regularization, drop rate y

* RandAug : a per-image data augmentation, with adjustable
magnitude e

« Mixup : a cross-image data augmentation. Given two images with labels (z;, y;)
—_— and (z;, y;), it combines them with mixup ratio A

Ty = Axj + (1 — AN)zyand 53 = Ay; + (1 — A)y;. We
would adjust mixup ratio A during training. 39



(2) Depthwise convolutions are slow in early layers

* Depthwise convolution (MobileNetV1, Xception®|A{ X|2)

v’ conv GIALZF

-_L-O

= ZFF0 A

ot HALZF

—_l—- -_L-O

LHOH| &

oro
LS —

filterE A2

o
49

HMO| US (fewer parameters and FLOPs than regular conv.)

v' 8}X|2t modern accelerator2 &235}X| 2510

SFA A

bl — N

« stage 1-3 0jlA{ MBConv LHAI0| Fused-MBConvE At

Fused-MBConyv|

v" Replace the depthwise conv3x3 and expansion conv1x1 in MBConv
with a single regular 3x3conv

v’ I E stage0lf| Fused-MBConvE X &5

9| stage0f|Zt Fused-MBConvE A2

tL 23512

SEE LA &

Table 3. Replacing MBConv with Fused-MBConv. No fused denotes all
stages use MBConv, Fused stage1-3 denotes replacing MBConv with
Fused-MBConv in stage {2, 3, 4}.

V100

Params FLOPs  Top-1 TPU
M) (B) Acc. | imgs/sec/core  imgs/sec/gpu
No fused 19.3 45 82.8% 262 155
Fused stagel-3 20.0 7.5 83.1% 362 216
Fused stagel-5 43.4 21.3  83.1% 327 223
Fused stagel-7 132.0 344 81.7% 254 206

= 0

oteg £71 LE MM, 27|

-\

HW,C

i convix1i i

T
| st |
Hwa4c |

depthwise
conv3x3

; Conv1x1 ;

HW.C

MBConv

HW,.C

T

P—

I

SE

HWw4C

Conv3x3

HW.C

|
Fused-MBConv

Figure 2. Structure of MBConv and Fused-MBConv.

Params / FLOPS XA

MBConv ELC} ZFX|at,

AH| throughput2 Fused-MBConv Xgt6t= Z10| O 2L}
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o EfficientNetV2 (Smaller Models and Faster Training)

(2) Depthwise convolutions are slow in early layers

https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html pany E
L/

HW,.C HW.C

32 /’:;\;\ A\ITX\
56x56
S

32

A b

l 56x56

SE
1x1 CONVOLUTION l HWA4C [ HW4C |

num_macs: 19M
depthwise
- 3x3 CONVOLUTION conv3x3
num_macs: 173M Y

E |

Y

B Conv3x3
3x3 DEPTHWISE_ CONVOLUTION
num_macs: 5M \;i\m)d
y
192
l HW.C | HW.C
192
S MBConv Fused-MBConv
S Figure 2. Structure of MBConv and Fused-MBConv.

Executes faster on Edge TPU

Params / FLOPS XA|= B2 MBConv HLCF 2EX|2
A regular 3x3 convolution (right) has more compute (multiply-and-accumulate (mac) AIH| throughput2 Fused-MBConv Z&6H= Z40| O 2Lt
operations) than a depthwise-separable convolution (left), but for certain
input/output shapes, executes faster on Edge TPU due to ~3x more effective

hardware utilization. a1



(3) Equally scaling up every stage is sub-optimal

 EfficientNet equally scales up all stages using a simple compound
scaling rule.

v" For example, when depth coefficient is 2, then all stages in the
networks would double the number of layers.

v" However, these stages are not equally contributed to the
training speed and parameter efficiency.

9 We will use a non-uniform scaling strategy to gradually add more
layers to later stages.

* In addition, EfficientNets aggressively scale up image size, leading to
large memory consumption and slow training.

() To address this issue, we slightly modify the scaling rule and
restrict the maximum image size to a smaller value.



3.3 Training-Aware NAS and Scaling
» Haver learned multiple design choices for improving training speed

1) NAS Search

Ll PAVEICINASRIEINE o)Ll is largely based on previous NAS

but aims to jointly optimize accuracy, parameter efficiency, and
training efficiency.

» Backbone : EfficientNet

» Search space : Conv. operation types {MBConv, Fused-MBConv},
number of layers, kernel size {3x3, 5x5), Expansion ratio {1, 4, 6}

« Sample up to 1,000 models and train each model about 10 epochs
with reduced image size for training.

» Search reward : Combines the model accuracy(A] Normalized
training step time(S| parameter size(P| using a weighted product 4 -
SW . PV where w=-0.07 and v=-0.05

Searched model “EfficientNetVV2-S”

Scale up EfficientNetV2-S to EfficientNetV2-
M/L using similar compound scaling

2) EfficientNetV2 architecture

» Major distinctions with EfficientNet and our EfficientNetV2
1) EfficientNetV2 uses both MBConv and fuzed MBConv in early layers.
2)EfficientNetV2 prefers

- smaller expansion ratios for MBConv

- smaller 3x3 kernel sizes, but add more layers to compensate the
reduced receptive field from the smaller kernel size.

3) Removes the last stride-1 stage.

Table 4. [SiilGEC\EA7E8S architecture — MBConv and Fused-MBConv
blocks are described in Figure 2.

Stage | Operator | Stride | #Channels | #Layers
0 Conv3x3 2 24 1
1 Fused-MBConvl, k3x3 1 24 2
2 Fused-MBConv4, k3x3 2 48 4
|" 3 Fused-MBConv4, k3x3 2 64 4
4 MBConv4, k3x3, SE0.25 2 128 6
5 MBConv6, k3x3, SE0.25 1 160 9
6 MBConv6, k3x3, SE0.25 2 272 15
7 Conv1x1 & Pooling & FC - 1792 1
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3) EfficientNetV2 Scaling 4) Training Speed Comparison

» Scale up EfficientNetV2-S to EfficientNetV2-M/L using similar » With our training-aware NAS and scaling, EfficientNetV2 model train
compound scaling with a few additional optimizations much faster than the other recent models.
1) Restrict the maximum inference image size to 480, as very large
images often lead to expensive memory and training speed EffNetv2 _NFNet
overhead; -7

2) As a heuristic, gradually add more layers to later stages (e.g.,
stage 5 and 6 in Table4) in order to increase the network capacity
without adding much runtime overhead.

85.04 EffNet(reprod)

- LambdaResNet

-t BoTNet
x

-
-

7 ResNet-RS
= EffNet(baseline)

-
-

Imagenet Top-1 Accuracy (%)

100 200 300 100 500 600 700 800
Steptime(ms) batch 32 per core

Figure 3. ImageNet accuracy and training step time on TPUv3 —
Lower step time is better; all models are trained with fixed
image size without progressive learning
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| Top-1Acc. Params FLOPs

Infer-time(ms)

o EfficientNetV2

Table 7. EfficientNetV2 Performance Results on
ImageNet (Russakovsky et al., 2015) —

Infer-time is measured on V100 GPU FP16 with batch
size 16 using the same codebase (Wightman, 2021);

Train-time is the total training time normalized for 32
TPU cores.

Models marked with 21k are pretrained on ImageNet21k
with 13M images, and others are directly trained on
ImageNet ILSVRC2012 with 1.28M images from scratch.

All EfficientNetV2 models are trained with our improved
method of progressive learning.

Model Train-time (hours)
EfficientNet-B3 (Tan & Le, 2019a) 81.5% 12M 1.9B 19 10
EfficientNet-B4 (Tan & Le, 2019a) 82.9% 19M 4.2B 30 21
EfficientNet-B5 (Tan & Le, 2019a) 83.7% 30M 10B 60 43
EfficientNet-B6 (Tan & Le, 2019a) 84.3% 43M 19B 97 75

» EfficientNet-B7 (Tan & Le, 2019a) 84.7% 66M 38B 170 139
RegNetY-8GF (Radosavovic et al., 2020) 81.7% 39M 8B 21 .
RegNetY-16GF (Radosavovic et al., 2020) 82.9% 84M 16B 32 -

ResNeSt-101 (Zhang et al., 2020) 83.0% 48M 13B 31 .

ResNeSt-200 (Zhang et al., 2020) 83.9% 70M 36B 76 -

ResNeSt-269 (Zhang et al., 2020) 84.5% 111M 78B 160 -

ConvNets TResNet-L (Ridnik et al., 2020) 83.8% 56M - 45 -
& Hybrid |  TResNet-XL (Ridnik et al., 2020) 84.3% 78M - 66 -
EfficientNet-X (Lietal., 2021) 84.7% 73M 91B - -

NFNet-FO0 (Brock et al., 2021) 83.6% M 12B 30 8.9

NFNet-F1 (Brock et al., 2021) 84.7% 133M 36B 70 20

NFNet-F2 (Brock et al., 2021) 85.1% 194M 63B 124 36

NFNet-F3 (Brock et al., 2021) 85.7% 255M 115B 203 65

NFNet-F4 (Brock et al., 2021) 859%  316M 215B 309 126

ResNet-RS (Bello et al., 2021) 84.49% 192M 128B - 61
LambdaResNet-420-hybrid (Bello, 2021) 84.9% 125M = - 67
BotNet-T7-hybrid (Srinivas et al., 2021) 84.7% 75M 46B - 95
BiT-M-R152x2 (21k) (Kolesnikov et al., 2020) 85.2%  236M 135B 500 =

ViT-B/32 (Dosovitskiy et al., 2021) 73.4% 88M 13B 13 -

ViT-B/16 (Dosovitskiy et al., 2021) 74.9% 87M 56B 68 -

DeiT-B (ViT+reg) (Touvron et al., 2021) 81.8% 86M 18B 19 -

Vision DeiT-B-384 (ViT+reg) (Touvron et al., 2021) 83.1% 86M 56B 68 -
Transformers  T2T-ViT-19 (Yuan et al., 2021) 81.4% 39M  84B - -
T2T-ViT-24 (Yuan et al., 2021) 82.2% 64M 13B - -

ViT-B/16 (21k) (Dosovitskiy et al., 2021) 84.6% 87M 56B 68 -

ViT-L/16 (21k) (Dosovitskiy et al., 2021) 85.3%  304M 192B 195 172
EfficientNetV2-S 83.9% 24M 8.8B 24 7.1
EfficientNetV2-M 85.1% 55M 24B 57 13

ConvNets EfficientNetV2-L 85.7% 121IM 53B 98 24
(ours) EfficientNetV2-S (21k) 85.0% 24M 8.8B 24 9.0
L EfficientNetV2-M (21k) 86.1% 55M 24B 57 15
EfficientNetV2-L (21k) | 86.8% 121M 53B 98 26

We do not include models pretrained on non-public [nstaszram/]ﬁ images. or models with extra distillation or ensemble.
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Figure 5. Model Size, FLOPs, and Inference Latency — Latency is measured with batch size 16 on V100 GPU. 21k denotes pretrained on
ImageNet21k images, others are just trained on ImageNet ILSVRC2012. Our EfficientNetV2 has slightly better parameter efficiency with

EfficientNet, but runs 3x faster for inference.

Scaling up data size is more effective than simply scaling up
model size in high-accuracy regime: when the top-1 accuracy is
beyond 85%, it is very difficult to further improve it by simply increasing
model size due to the severe oveffitting. However, the extra
ImageNet21K pretraining can significantly improve accuracy.

Pretraining on ImageNet21k could be quite efficient. Although
ImageNet21k has 10x more data, our training approach enables us to
finish the pretraining of EfficientNetV2 within two days using 32 TPU
cores (instead of weeks for ViT (Dosovitskiy et al., 2021)).
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