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Figure 1: The Transformer - model architecture.
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A Self-Organizing State-Space Model

Genshiro Kmaaawa  Genshiro Kitagawa = Institute of Statistical Mathematics (ISM), Tokyo,

_______ Sept 1998 5992 218 .

A self-organizing filter and smoother for the gencral nonlinear non-Gaussian state-space model is proposed. An expanded state-

apace model is de
of the augimented
simaltancously by ei

estimation of mode] paranieters in ordinary state-space modeling. for which the recursive filter cos
times. model parameter estimation io the proposed self-orgami zing Altes/smoother is achieved with
tuning of dispersion and the shape parimeters, adaplation (0 changes
o0 for a sonlinear state space modk] with wnknown parameters, and

filler and smouther operations. Examples such as autom
of the amplitude of a signal in seismic data, state ¢

d by nugmenting the state vector with the unknown parametces of the otiginal statc-spuce model. The state
ce nwodel, and hence the state and the parametees of the original statc-spoce model, are cstimated
a non-Gaussian filtes/smoother o & Monte Carlo filter/smoother. In contiast o maximum likelibood

putation has 1 be done many
y twe passes of the recursive

seasonal adjustment with 8 noalincar model with changing variance parameters arc shown to exemplify the usefulness of the

proposed methad

KEY WORDS: Bayesian estimation; Filering: Likelihood; Nonlincar model; Parameser estimation; Self-tuning: Smoothing.

1. INTRODUCTION

Since the development of the Kalman filter in 1960, the
state-space model has been widely vsed in many ficlds of
engineering. However, use of the state-space model became
popular in the statistical community only after it was intro-
duced for stochastic system identification by autoregressive
moving average (ARMA)} modeling (Akaike 1974) and in
the dynamic linear mode] (Harrison and Stevens 1976). By
the 1980s, the state-space model was a popular tool for han-
dling nonstationary time series (Harvey 1989; Kitagawa and
Gersch 1984).

In the latter hulf of that decade, many statisticians were
interested in the analysis of various types of nonstandard
time series, for which the ondinary lincar Gaussian state-
space model cannot yield reasonable results. To handle such
problems, several types of nonlinear non-Gaussian state-
»pm.\, models and related murmc filtering and smoathing

hms were developed: the dynamic generalized linear
madel (Fahrmeir 1992; Smith and Miller 1986; West and
Harrison 1997; West, Harrison, and Migon 1985) and var-
ious extensions of the Kalman filter (Fahrmeir and Kauf-
mann 1991, Frihwinth-Schnauer 1994 Kitagawa 1994;
Meinhold and Singpurwalla 1989; Schnatter 1992), the
Gibbs sampler-based method (Carlin, Polson, and Stoffer
1992}, and the sequential imputations of Kong, Liu, and
Wong (1994).

On the other hand, in earlier work (Kitagawa 1987) 1 pro-
posed an alternative non-Gaussian filler and smoother that
can yield the exact marginal posterior density of the state
for fairly general types of state-space models. Because that
method is based on numerical integration, its application
is limited only 1o the models with relatively low state di-

Genshiro Kitagawa is Professor, Depantment of Prodic and Con-
trol, The Institute of Mathematics, Tokyo 106-85¢ an. The
auther thanks Will € the University of Hawaii and Tomoyuki
Higuchs of the Institute of Statistical Ma athematics for their wseful com:

i

mension (say, less than or equal 10 4). Despite the develop-
ment of various refinements of the integration method (e.g..
Hodges and Hale 1993; Tanizaki 1993}, they did not yield
an essential solution to the problem of modeling nonstan-
dard time series.

A Monte Carlo filter and smoother was shown in ear-
lier work (Kitagawa 1993, 1996) which is applicable to
very general state-space models forms. [A similar “boot-
strap filter” algorithm was proposed by Gordon. Salmond.
and Smith (1993). The problem that Gordon et al. and I
considered is in fact a signal extraction problem that is
one-to-one with the smoothing problem (Kohn and Ansley
1988). Gordon et al. did not address smoothing.| In Monte
Carlo type methods, arbitrary non-Gaussian densities are
approximated by many particles that can be considered re-
alizations from the distributions. With the development of
these algorithms, it is now possible to use high-dimensional
nonlinesr non-Gaussian state-space models for the analysis
of complex time series.

Nevertheless, a very important question remained: How
10 operale 1t without knm\lndg-. of \)uem parameters?
{Solo 1989). In the i . the maximum
likelihood method is commonly used to njdmsa that prob-
lem. But for nonlincar or non-Gaussian state-space model-
ing, two factors sometimes render the maximum likelihood
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A self-organizing filter and smoother for the general nonlinear non-Gaussian state-space model is
proposed. An expanded state-space model is defined by augmenting the state vector with the
unknown parameters of the original state-space model. The state of the augmented state-space
model, and hence the state and the parameters of the original state-space model, are estimated
simultaneously by either a non-Gaussian filter/smoother or a Monte Carlo filter/smoother. In contrast
to maximum likelihood estimation of model parameters in ordinary state-space modeling, for which
the recursive filter computation has to be done many times, model parameter estimation in the
proposed self-organizing filter/smoother is achieved with only two passes of the recursive filter and
smoother operations.

Examples such as automatic tuning of dispersion and the shape parameters, adaptation to changes
of the amplitude of a signal in seismic data, state estimation for a nonlinear state space model with
unknown parameters, and seasonal adjustment with a nonlinear model with changing variance
parameters are shown to exemplify the usefulness of the proposed method.
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Time Series Analysis by State Space Methods
(2nd edn)
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Search in this book Q Abstract

This book presents a comprehensive treatment of the state space approach to
time series analysis. The distinguishing feature of state space time series
models is that observations are regarded as being made up of distinct

Online ISBN: 9780191774881

1

components such as trend, se al, regression and disturbance
elements, each of which is modelled separately. The techniques that emerge
from this approach are very flexible. Part I presents a full treatment of the

Print ISBN: 9780199641178

Publisher: Oxford University Press
construction and analysis of linear Gaussian state space models. The methods
are based on the Kalman filter and are appropriate for a wide range of problems
in practical time series analysis. The analysis can be carried out from both
classical and Bayesian perspectives. Part I then presents illustrations to real
series and exercises are provided for a selection of chapters. Part II discusses
approximate and exact approaches for handling broad classes of non-Gaussian
and nonlinear state space models. Approximate methods include the extended
Kalman filter and the more recently developed unscented Kalman filter. The
book shows that exact treatments become feasible when simulation-based
methods such as importance sampling and particle filtering are adopted.
Bayesian treatments based on simulation methods are also explored.

Keywords: unobserved components, Kalman filter and smoother, signal
extraction, forecasting, maximum likelihood, extended Kalman filter, unscented
Kalman filter, simulation-based methods, Monte Carlo, importance sampling

Subject: Probability and Statistics
Collection: Oxford Scholarship Online
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Time Series Analysis by State Space Methods
James Durbin, Siem Jan Koopman = May 2012, 54528] 2/&

Abstract

This book presents a comprehensive treatment of the state space approach to time series analysis. The distinguishing
feature of state space time series models is that observations are regarded as being made up of distinct components such
as trend, seasonal, regression elements and disturbance elements, each of which is modelled separately. The techniques that
emerge from this approach are very flexible. Part | presents a full treatment of the construction and analysis of linear
Gaussian state space models. The methods are based on the Kalman filter and are appropriate for a wide range of problems
in practical time series analysis. The analysis can be carried out from both classical and Bayesian perspectives. Part | then
presents illustrations to real series and exercises are provided for a selection of chapters. Part Il discusses approximate and
exact approaches for handling broad classes of non-Gaussian and nonlinear state space models. Approximate methods
include the extended Kalman filter and the more recently developed unscented Kalman filter.

The book shows that exact treatments become feasible when simulation-based methods such as importance sampling and
particle filtering are adopted. Bayesian treatments based on simulation methods are also explored.
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On Particle Methods for Parameter Estimation in State-Space Models
Nikolas Kantas, Arnaud Doucet, Sumeetpal S. Singh, Jan Maciejowski, Nicolas Chopin

Nenlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering and signal
processing. Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical approximations to
the associated state inference problems. However, in most applications, the state-space model of interest also depends on unknown
static parameters that need to be estimated from the data. In this context, standard particle methods fail and it is necessary to rely on
more sophisticated algorithms. The aim of this paper is to present a comprehensive review of particle methods that have been
proposed to perform static parameter estimation in state-space models. We discuss the advantages and limitations of these methods
and illustrate their performance on simple models.
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On Particle Methods for Parameter Estimation in State-Space Models

Abstract

Nonlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering
and signal processing.

Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical
approximations to the associated state inference problems.

However, in most applications, the state-space model of interest also depends on unknown static parameters
that need to be estimated from the data. In this context, standard particle methods fail and it is necessary to rely
on more sophisticated algorithms.

The aim of this paper is to present a comprehensive review of particle methods that have been proposed to
perform static parameter estimation in state-space models.
We discuss the advantages and limitations of these methods and illustrate their performance on simple models..
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Efficiently Modeling Long Sequences with Structured State Spaces
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A central goal of sequence modeling is designing a single principled model that can address sequence data across a range
of modalities and tasks, particularly on long-range dependencies. Although conventional models including RNNs, CNNs,
and Transformers have specialized variants for capturing long dependencies, they still struggle to scale to very long
sequences of 10000 or more steps. A promising recent approach proposed modeling sequences by simulating the
fundamental state space model (SSM) \( x'(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) \), and showed that for appropriate choices
of the state matrix Y A \), this system could handle long-range dependencies mathematically and empirically. However, this
method has prohibitive computation and memory requirements, rendering it infeasible as a general sequence modeling
solution. We propose the Structured State Space sequence model (S4) based on a new parameterization for the SSM, and
show that it can be computed much more efficiently than prior approaches while preserving their theoretical strengths. Qur
technique involves conditioning \( A \) with a low-rank correction, allowing it to be diagonalized stably and reducing the
SSM to the well-studied computation of a Cauchy kernel. S4 achieves strong empirical results across a diverse range of
established benchmarks, including (i) 91\% accuracy on sequential CIFAR-10 with no data augmentation or auxiliary
losses, on par with a larger 2-D ResNet, (ii) substantially closing the gap to Transformers on image and language modeling
tasks, while performing generation 60 x faster (iii) SoTA on every task from the Long Range Arena benchmark, including
solving the challenging Path-X task of length 16k that all prior work fails on, while being as efficient as all competitors.
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they still struggle to scale to very long sequences of 10000 or more steps. A promising recent approach
proposed modeling sequences by simulating the fundamental state space model (SSM) z'(t) = Ax(t) +
Bu(t),y(t) = Cxz(t) + Du(t), and showed that for appropriate choices of the state matrix A, this
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Efficiently Modeling Long Sequences with Structured State Spaces (S4)

Abstract

A central goal of sequence modeling is designing a single principled model that can address sequence data across a
range of modalities and tasks, particularly on long-range dependencies.

Although conventional models including RNNs, CNNs, and Transformers have specialized variants for capturing long
dependencies, they still struggle to scale to very long sequences of 10000 or more steps.

A promising recent approach proposed modeling sequences by simulating the fundamental state space model (SSM)
\(X'(t) = Ax(t) + Bu(®), y(t) = Cx(®) + Du(t) \), and showed that for appropriate choices of the state matrix \( A \), this system
could handle long-range dependencies mathematically and empirically.

However, this method has prohibitive computation and memory requirements, rendering it infeasible as a general
sequence modeling solution.

We propose the Structured State Space sequence model (S4) based on a new parameterization for the SSM, and show
that it can be computed much more efficiently than prior approaches while preserving their theoretical strengths.

Our technigue involves conditioning \( A \) with a low-rank correction, allowing it to be diagonalized stably and reducing
the SSM to the well-studied computation of a Cauchy kernel.

S4 achieves strong empirical results across a diverse range of established benchmarks, including (i) 91\% accuracy on
sequential CIFAR-10 with no data augmentation or auxiliary losses, on par with a larger 2-D ResNet, (i) substantially
closing the gap to Transformers on image and language modeling tasks, while performing generation 60x faster (iii)
SoTA on every task from the Long Range Arena benchmark, including solving the challenging Path-X task of length 16k
that all prior work fails on, while being as efficient as all competitors.
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Search Abstract
A central problem in learning from sequential data is representing cumulative history in an incremental fashion as more data is
processed.

ar (1\/ > cs > arXiv:2008.07669

Computer Science > Machine Learning We introduce a general framework (HiPPO) for the online compression of continuous signals and discrete time series by
[Submided on 17 Aug 2020 (1), last reviseet 23 Oct 2020 fhis version, v2) projection onto polynomial bases. Given a measure that specifies the importance of each time step in the past, HiPPO
. i : : : 5. . g% produces an optimal solution to a natural online function approximation problem.
HiPPO: Recurrent Memory with Optimal Polynomial Projections
Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, Christopher Re As special cases, our framework yields a short derivation of the recent Legendre Memory Unit (LMU) from first principles, and
' generalizes the ubiquitous gating mechanism of recurrent neural networks such as GRUs. This formal framework yields a new
A central problem in learning from sequential data is representing cumulative history in an incremental fashion as more data is memory update mechanism (HiPPO—LegS) that scales through time to remember all hiStOFy, avoiding priors on the timescale.
processed. We introduce a general framework (HiPPO) for the online compression of continuous signals and discrete time series by
projection onte polynomial bases. Given a measure that specifies the importance of each time step in the past, HIPPO produces an HiPPO-LegS enjoys the theoretical benefits of timescale robustness, fast updates, and bounded gradients.
optimal solution to a natural online function approximation problem. As special cases, our framework yields a short derivation of the By incorporating the memory dynamics into recurrent neural networks, HiPPO RNNs can empirically capture complex temporal
recent Legendre Memory Unit (LMU) from first principles, and generalizes the ubiquitous gating mechanism of recurrent neural dependencies. On the benchmark permuted MNIST dataset, HIPPO-LegS sets a new state-of-the-art accuracy of 98.3%.
networks such as GRUs. This formal framework yields a new memory update mechanism (HiPPO-LegS) that scales through time to
remermber all history, aveiding priors on the timescale. HIPPO-LegS enjoys the theoretical benefils:of imascale robustiess, Tast Finally, on a novel trajectory classification task testing robustness to out-of-distribution timescales and missing data, HiPPO-
updates, and bounded gradients. By incorporating the memory dynamics into recurrent neural networks, HiPPO RNNs can Legs outperforms RNN and neural ODE baselines by 25-40% accuracy.
empirically capture complex temporal dependencies. On the benchmark permuted MNIST dataset, HIPPO-Leg$ sets a new state-of-
the-art accuracy of 98.3%. Finally, on a novel trajectory classification task testing robustness to out-of-distribution timescales and
missing data, HIPPO-Leg$S outperforms RNN and neural ODE baselines by 25-40% accuracy. XA O|O|E{O| M &&dt= 4| Q0| sHAXOl 2X|= 0 R2 HO|EH7F N =0 et & 7|22 HANMO 2 LIEHLY= ALY LT},
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We introduce the Falcon series: 7B, 40B, and 180B parameters causal decoder-only models trained on a
diverse high-quality corpora predominantly assembled from web data.

Computer Sci > Computation and Languag Sou rce:

[Submitted on 28 Nov 2023 (v1), last revised 29 Nov 2023 (this version, v2)] httDS //a rXIV orq/abs/23'] 'I 'I 6867
The Falcon Series of Open Language Models

The largest model, Falcon-180B, has been trained on over 3.5 trillion tokens of text-the largest openly
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Cojocaru, Mérouane Debbah, Etienne documented pretraining run. Falcon-180B Signiﬁcanﬂy outperforms models such as PaLM or Chinch]”al and
Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic, Daniele Mazzotta, Badreddine Noune, Baptiste Pannier, Guilherme Penedo improves UpOl’] COI’\CUI’I’@I’]Hy developed models SUCh as LLaMA 2 or Inﬂection—1

We introduce the Falcon series: 7B, 408, and 1808 parameters causal decoder-only models trained on a diverse high-quality corpora predeminantly
assembled from web data. The largest model, Falcon-180B, has been trained on over 3.5 trillion tokens of text—the largest apenly documented It nears the performance Of PaLM-2 _Large at a reduced pretraining and mfe rence COSt, maki ng it/ to our

pretraining run. Falcon-180B significantly outperforms models such as PaLM or Chinchilla, and improves upon concurrently developed models such . . _ o
as LLaMA 2 or Inflection-1. It nears the performance of PaLM-2-Large at a reduced pretraining and inference cost, making it, to our knowledge, one knOW|edge’ one Of the three beSt |anguage mOde|S n the WOr'd along Wlth GPT 4 and PaLM 2 La rge'

of the three best language models in the world along with GPT-4 and PaLM-2-Large. We report detailed evaluations, as well as a deep dive into the

methods and custom tooling employed to pretrain Falcon. Notably, we report on our custom distributed training codebase, allowing us to efficiently We report detailed evaluations, as well as a deep dive into the methods and custom tooling employed to
pretrain these models on up to 4,096 A100s on cloud AWS infrastructure with limited interconnect. We release a 600B tokens extract of our web pretram Falcon Notably we report on our CUStom distributed trammg Codebase a”Ong us tO efﬁdenﬂy
dataset, as well as the Falcon-7/40/180B models under a permissive license to foster open-science and accelerate the development of an open . ) ! . . . .
ecosystem of large language models. pretrain these models on up to 4,096 A100s on cloud AWS infrastructure with limited interconnect.
iE”JEUS' C;{“*;“;jf";;_:"{“ﬁ‘;ﬂﬂ"‘Csﬂl- Al vl (e ) We release a 600B tokens extract of our web dataset, as well as the Falcon-7/40/180B models under a
ite as. araiv: 16867 [cs. . . . .
(0 aPONZ3T1, 160672 [c5.CL] for i vessian) permissive license to foster open-science and accelerate the development of an open ecosystem of large
hitps{/doi org/10.43550/arXiv.2311.16867 @ Ianguage models.
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Falcon Mamba 7B: Highlights

> OFELCHH| JEo| MEH7|& A2 ’;Z|(ATRC) &S 7| =& A A2 (T 7} “Fal . :
e = |EEAA|E’<;_FLT| I ) Hol= T(TI)7F Falcon *Falcon Mamba 7B is the first open source released State Space Language Model
Mamba 7B'E @LE AAE ZA| . .
(SSLM), a new revolutionary architecture for Falcon models
> Falcon Mamba 7B *Falcon Mamba 7B is the no. 1 globally performing open source SSLM in the world,

1) M2| 7ttt 2|t} AHAE ZO[E 2QIot= HAEN A soTA EMAZD 7| RRLCHEH 2
AELE Me| e 5 ok et

as independently verified by Hugging Face

) ME|ZEHAENME RE ESS UM £C 2 AN *SSLMs have a low memory cost and don’t require additional memory to generate
3) O|2EE 782l S2t0|d A= O{HIM OF7 | I E S7tot A arbitrary long blocks of text

4) LUHHIX|IOIR0ME EHARN RH2 82, 7|E ssmELF 0L L H| ot H5E8 7|5 . i ;
5) 2 (Arc), E1ZHEL K| (TruthfulQn), 281 (GSM8K) HIXIDF 00 A 24 2t 62.03%, 53.42%, 52 54% S Falcon Mam!oa 7B also outperform_s trafiltlonal transformer architecture models
7|12 such as Meta’s Llama 3.1 8B and Mistral’s 7B
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E ?ﬂ ﬁE I]'I OI'9I E—.l! I-I Q_I EH |o_|' = SSM . Ma m ba Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Albert Gux, Tri Daox = Carnegie Mellon/ Princeton University

3 I' (1\, > s > arXiv:2312.00752v2 Albert Gus, Tri Daox = Carnegie Mellon/ Abstract . N - ‘ ‘
Princeton University, Dec.. 2023, 6942 2/ | Foundation models, now powering most of the exciting applications in deep learning, are almost universally

Computer Science > Machine Learning based on the Trarjsfo_rmer ar;hitecture and its core attention module. _

Many subquadratic-time architectures such as linear attention, gated convolution and recurrent models, and

structured state space models (SSMs=S4) have been developed to address Transformers' computational

inefficiency on long sequences, but they have not performed as well as attention on important modalities such

[Submitted on 1 Dec 2023 (v1), last revised 31 May 2024 (this version, v2)]

Mamba: Linear-Time Sequence Modeling with Selective State Spaces

Albert Gu, Tri Dao as language.
We identify that a key weakness of such models is their inability to perform content-based reasoning, and
Foundation models, now powering most of the exciting applications in deep learning, are almost universally based on the make several improvemems'
Transformer architecture and its core attention module. Many subquadratic-time architectures such as linear attention, gated Fil’St, simply Ietting the SSM parameters be fUI’\CtiOﬂS Of the input addresses their Weakness With discrete

convolution and recurrent models, and structured state space models (SSMs) have been developed to address Transformers'
computational inefficiency on long sequences, but they have not performed as well as attention on important modalities such as
language. We identify that a key weakness of such models is their inability to perform content-based reasoning, and make
several improvements. First, simply letting the SSM parameters be functions of the input addresses their weakness with discrete

modalities, allowing the model to selectively propagate or forget information along the sequence length
dimension depending on the current token.
Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware

modalities, allowing the model to selectively propagate or forget information along the sequence length dimension depending on para”el algorithm in recurrent mOde'

the current token. Second, even though this change prevents the use of efficient convolutions, we design a hardware-aware We integrate these selective SSMs into a Simp“ﬂed end-to-end neural network architecture without attention
parallel algorithm in recurrent mode. We integrate these selective SSMs into a simplified end-to-end neural network architecture or even MLP blocks (Mamba).

without attention or even MLP blocks (Mamba). Mamba enjoys fast inference (5x higher throughput than Transformers) and Mamba enjoyg fast inference (5x higher throughput than Transformers) and linear Scaling in sequence |eﬂgth,
linear scaling in sequence length, and its performance improves on real data up to million-length sequences. As a general and its performance improves on real data up to million—length sequences. As a general sequence model

sequence model backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio,
and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and matches
Transformers twice its size, both in pretraining and downstream evaluation.

backbone, Mamba achieves state-of-the-art performance across several modalities such as language, audio,
and genomics. On language modeling, our Mamba-3B model outperforms Transformers of the same size and
matches Transformers twice its size, both in pretraining and downstream evaluation.

Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs Al) '?';:{XH L_E} E-I I6| ‘E‘OF9| [H_hll__E_gl %ﬂli% 0H§E| ﬂlolﬁ% Il.‘,’-l__la'l.E 7|I:I|_|- EE'EI% 7-|2| Erﬂ&!gg E%llﬁEu-l ol';lE%l
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[v1] Fri, 1 Dec 2023 18:01:34 UTC (1,264 KB) hey EEI{L |E'|°|_ EE—' /o o0 T e— ||__|_|_E_|_OE_|_HA |-L A= —||_0|'_I_;'< |' | HI_ |'OEX1|O|=|
[v2] Fri, 31 May 2024 17:55:27 UTC (1,017 KB) [T . N . N
- S, ssm O 42 Q20| B4 2 S HBIO 2 & 7| QA0 2 OFH S S| Zs10l RUO| HX| £ 20| uf2} Al
Mamba: S42| 71 E S HIEt O 2 7y w AL ZO| AU S M Moz Y E MOIStAHLE AOH E = AS LT
@ 7 AHAE BEFHOE XHESHME | =W, 0|2ttt HPo = QS R EHQ HERHS ALEY = S0 2750 B ZEO| M SHEQOf Q1A HE
IS Ox|at A ol 2 M 22 ES dA T
© 1858 RN 5 A=S 2 gEJDoi*EMLE'Her S zo|Z 7|20[X| %1 AIX 2= 10| Cha3lEl lE S0l C AlZT} O
2[= ol2{ot ME K ssmE F2|5 7| 20| X| @1 A X[0] MLP =5 (Mamba) 80| the2tE AEFAE MHY Of
Mambas 53| H 22 M-S A4 XH2l 7| o SBELICY,

T BHRS WE XE(EUATO|ECEsH 52 N )T AIBA Lojo| MY HAYS S
e 7EX) | CO|E{0IA A50] S4HEILICH AR 0] A FA 2B =0l Btk olof jstut 22

L2 QA HN AHE 4SS SABILICL Olo] BN Ao Bbt3s RHL EAUs 37|0| EWAEDS
Jotof AV 22 A CHRAE R W7t BR0M EMAZOECE S o] 2 37| 9 AxIBHLC

=
2842 Jrjster7| 2ls) 40| M B2t
PHE J|&2 M3 TR

[activation or
multpcation)

I I
® Gated MLP = Mamba

N newgen  Copyright © 2015 newgen and it



LM ds7HdE Izt AT - RAG 7|8t D Path EMAZDN O 2| Rev1.0 (From 1.6 Ver) - HIOILIZES No. 16 by 24. 8/17(E) m

E ?ﬂ ﬁi I]'I OI'9I E—.l! I-I g-l EH |o_|' = SSM . Jamba Jamba: A Hybrid Transformer-Mamba Language Model
March 2024, 508/ E/g We present Jamba, a new base large language model based on a novel hybrid Transformer-Mamba mixture-
Computer Science > Computation and Language of-experts (MoE) architecture.
[Submitted on 28 Mar 2024 (1), last revised 3 Jul 2024 {this version, v2)] Speg:i.fically, Jamba interleaves blocks of Transformer and Mamba layers, enjoying the benefits of both model
Jamba: A Hybrid Transformer-Mamba Language Model families.

MoE is added in some of these layers to increase model capacity while keeping active parameter usage
Opher Lieber, Barak Lenz, Hofit Bata, Gal Cohen, Jhonathan Osin, Itay Dalmedigos, Erez Safahi, Shaked Meirom, Yonatan manageable. This flexible architecture allows resource- and objective-specific configurations.

Belinkov, Shai Shalev-Shwartz, Omri Abend, Raz Alon, Tomer Asida, Amir Bergman, Roman Glozman, Michael Gokhman, In the particular configuration we have implemented, we end up with a powerful model that fits in a single
isshaomanevictty IR mer,ihoam Razeh,{Erez ShWarts, Mor Zusman, Yiaw shohsi 80GB GPU. Built at large scale, Jamba provides high throughput and small memory footprint compared to

We present Jamba, a new base large language model based on a novel hybrid Transformer-Mamba mixture-of-experts (MoE) architecture vanilla Transformers, and at the same time state-of-the-art performa nce on standard |anguage model

Specifically, Jamba interleaves blocks of Transformer and Mamba layers, enjoying the benefits of both model families. MoE is added in benchma rks and |Ong—c0ntext eVaantionS.

some of these layers to increase model capacity while keeping active parameter usage manageable. This flexible architecture allows Remarkably, the model presents strong results fOI’ Up to 256K tokens context |ength. We study various

resv?urce— and objective-specific configurations. In the particular configuration we have implemented, we end up with a pov:erful model that architectural decisions, such as hOW to combine Transformer and Mamba Iayers, and hOW to mix experts, and
fits in a single 80GB GPU. Built at large scale, Jamba provides high throughput and small memory footprint compared to vanilla . . .

Transformers, and at the same time state-of-the-art performance on standard language model benchmarks and long-context evaluations. ShOW that some Of them are CrUCIal n large scale mOdellng'

Remarkably, the model presents strong results for up to 256K tokens context length. We study various architectural decisions, such as how

to combine Transformer and Mamba layers, and how to mix experts, and show that some of them are crucial in large scale modeling. We We also describe several interesting properties of these architectures which the training and evaluation of

also describe several interesting properties of these architectures which the training and evaluation of Jamba have revealed, and plan to
release checkpoints from various ablation runs, to encourage further exploration of this novel architecture. We make the weights of cur
implementation of Jamba publicly available under a permissive license

Jamba have revealed, and plan to release checkpoints from various ablation runs, to encourage further
exploration of this novel architecture.
We make the weights of our implementation of Jamba publicly available under a permissive license.

Comments: Webpage: this https URL
Subjects:  Computation and Language (cs.CL); Machine Leamning (cs LG)
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EsiA LM Of7|EIA 2| C{Ot = SSM : Transformer are SSMs (Mamba-2)

Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space
Duality (Mamba-2)

Abstract

While Transformers have been the main architecture behind deep learning's success in language modeling,
state-space models (SSMs) such as Mamba have recently been shown to match or outperform Transformers at
small to medium scale.

Tri Dao, Albert Gu, Princeton / Carnegie Mellon University,
Princeton / Carnegie Mellon University, May 2024, 323] PI&

Computer Science > Machine Learning

ar <1V > cs > arXiv:2405.21060

[Submitted on 31 May 2024]
Transformers are SSMs: Generalized Models and Efficient Algorithms Through
Structured State Space Duality

We show that these families of models are actually quite closely related, and develop a rich framework of
Tri Dao, Albert Gu

theoretical connections between SSMs and variants of attention, connected through various decompositions of

While Transformers have been the main architecture behind deep leaming's success in language modeling, state-space models (SSMs) a well-studied class of structured semiseparable matrices.
such as Mamba have recently been shown to match or outperform Transformers at small to medium scale. We show that these families

of models are actually quite closely related, and develop a rich framework of theoretical connections between SSMs and variants of Our state Space duallty (SSD) framework aIIows us to deSIQn a hew arChlteCture (Mamba-Z) Whose core

attention, connected through various decompositions of a well-studied class of structured semiseparable matrices. Our state space |ayer is an a refinement of Mamba's selective SSM that is 2-8X faster, while COﬂtiHUing to be Competitive with
duality (SSD) framework allows us to design @ new architecture (Mamba-2) whose core layer is an a refinement of Mamba's selective Transformers on |ang uage modeling.
SSM that is 2-8X faster, while continuing to be competitive with Transformers on language modeling

EMAZDIE Foi o o10] DU 43 BIHO| Y TR 0P| K AT, Bbk(Mamba)2t 22 HEf 37 2
Comments: ICML 2024 T a- -

Subjects: Machine Learning (c5.LG) EHIEIEI’“ (SSM)% -;Ele' §_+_ H‘EO'"A'l E?!ﬁ;'f_‘u'lgl‘ % Xl OI‘7‘I LI‘ %7"0"% 719% Ll‘EI'I;)ta |__| EI‘
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Eai A O}7|ElX O] CQF = SSM : Samba https://github.com/microsoft/Samba

71 - Liliang Ren1,2* Yang Liult Yadong LuTt Yelong Sheni Chen . . . L. .
SN e Liang1 Weizhu Chenl / Microsoft 2, University of lllinois, May Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling

Computer Science > Gomputation and L2024, 363 21& Abstract

[Submitted on 11 Jun 2024]

Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Efficiently modeling sequences with infinite context length has been a long-standing problem.
Modeling Past works suffer from either the quadratic computation complexity or the limited extrapolation

ability on length generalization.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, Weizhu Chen b . . . . .
v v ¥ g . In this work, we present Samba, a simple hybrid architecture that layer-wise combines Mamba,

Efficiently modeling sequences with infinite context length has been a long-standing problem. Past works suffer from either the quadratic a selective State Space Model (SSM), With S||d|ng Window Attention (SWA)
computation complexity or the limited extrapolation ability on length generalization. In this work, we present Samba, a simple hybrid architecture . . . . . .
that layer-wise combines Mamba, a selective State Space Model (SSM), with Sliding Window Attention (SWA). Samba selectively compresses a Samba. s?|ECtlve|y cgmpresses Aa glven sequence .|nto recurrent h|d<;ien states V\{hlle Stl”
given sequence into recurrent hidden states while still maintaining the ability to precisely recall memories with the attention mechanism. We scale mamtammg the ab|||ty to PreCISG|y reca” memories W|th the attention meChan|5m~
Samba up to 3.8B parameters with 3.2T training tokens and show that Samba substantially outperforms the state-of-the-art models based on pure We Sca|e Samba up to 383 parameters Wlth 32T training tOkenS and ShOW that Samba
attention or SSMs on a wide range of benchmarks. When trained on 4K length sequences, Samba can be efficiently extrapolated to 256K context SUbStantia”y Outperforms the State'of'the'a rt mOdelS based on pUre attention or SSMS on a Wlde
length with perfect memory recall and show improved token predictions up to 1M context length. As a linear-time sequence model, Samba enjoys f b h k
a 3.73x higher throughput compared to Transformers with grouped-query attention when processing user prompts of 128K length, and 3 64x ra nge 0 ) enchmarks. .
speedup when generating 64K tokens with unlimited streaming. A sample implementation of Samba is publicly available in this https URL When trained on 4K |ength sequences, Samba can be effICIentIy eXtrapolated to 256K context
length with perfect memory recall and show improved token predictions up to 1M context length.
Subjects: Computation and Language (¢s.CL); Machine Learning (cs.LG) . 4 . .
. AR As a linear-time sequence model, Samba enjoys a 3.73x higher throughput compared to
{er arX:2406 07522v1 [es.CL] for this version) Transformers with grouped-query attention when processing user prompts of 128K length, and
Wfpecd ol om0 eEHarian 200 OT2Z ) 3.64x speedup when generating 64K tokens with unlimited streaming. A sample implementation
Submission history of Samba is publicly available in this https URL.
From: Liliang Ren [view email]
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epict the layer-wise integration of Mamba with various configurations of Multi-Layer Perceptrons 10l 0 =3 TEOTES =t =255 =0 E 2 AT o Lo =t
(MLPs) and Sliding Window Attention (SWA). We assume the total number of intermediate layers to ](-:’ZSK _E|_(3|—| Aﬂl’ 5] {_l' —_—a=== x'I El = [[H JOHAEH}-):.TI‘-T;I Ell_—[—_| EE ,_HA_ﬁ‘;ED'l 01|_||:|_|L(:H 3.73 HH = T X‘I 2| &
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https://qithub.com/microsoft/Samba
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